Paper:
Properties of Photopolymer Part with Aligned Short Ferromagnetic Fibers
Takeshi Nakamoto† and Sho Marukado
Department of Mechanical Engineering, Graduate School of Engineering, Chiba University
1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
†Corresponding author,
- [1] K. Yamaguchi, T. Nakamoto, P. Abraha, Karyawan, and A. Ito, “Manufacturing of Micro Structures by Using UV Sensitive Photopolymer (3rd Report, Writing with a Focused Beam),” Trans. of the Japan Society of Mechanical Engineers, Series C, Vol.61, No.581, pp. 304-310, 1995 (in Japanese).
- [2] T. Nakamoto, K. Yamaguchi, P. Abraha, A. Ito, and K. Mishima, “Manufacturing of Micro Structures by Using UV Sensitive Photopolymer (4th Report, Manufacturing of 3-Dimensional Microstructures by Writing with a Focused Beam),” Trans. of the Japan Society of Mechanical Engineers, Series C, Vol.62, No.594, pp. 677-682, 1996 (in Japanese).
- [3] S. Maruo and K. Ikuta, “Submicron Stereolithography for the Production of Freely Movable Mechanisms by using Single-photon Polymerization,” Sensors and Actuators A, Vol.100, pp. 70-76, 2002.
- [4] H. Nishino, T. Miyoshi, Y. Takaya, S. Takahashi, T. Hayashi, and K. Kimura, “Study on Nonlaminate Micro-stereolithography using LCD Mask (2nd Report, Thin Layer Laminating Fabrication using LCD Live-motion Mask),” J. of the Japan Society for Precision Engineering, Vol.69, No.10, pp. 1417-1422, 2003 (in Japanese).
- [5] M. Saedan, “Drop-on-Demand Printer for Micro Ion-Selective Electrode Fabrication,” Int. J. of Automation Technology, Vol.5, No.5, pp. 634-638, 2011.
- [6] S. Yoshida, K. Sato, and S. Takeuchi, “Three-Dimensional Microassembly of Cell-Laden Microplates by in situ Gluing with Photocurable Hydrogels,” Int. J. of Automation Technology, Vol.8, No.1, pp. 95-101, 2014.
- [7] D. Lee, T. Miyoshi, Y. Takaya, H. Taeho, and T. Hayashi, “Study on LCD Micro Stereolithography using Ceramic Nanoparticles Reinforced Photosensitive Resin,” J. of the Japan Society for Precision Engineering, Vol.71, No.11, pp. 1415-1420, 2005 (in Japanese).
- [8] S. Kirihara, M. Takeda, K. Sakoda, and Y. Miyamoto, “Electromagnetic Wave Diffractions in Ceramic-/-Polymer Photonic Crystals with Three-Dimensional Diamond Structure,” J. of the Ceramic Society of Japan, Vol.111, No.7, pp. 471-478, 2003 (in Japanese).
- [9] T. Hayashi, Y. Takaya, and D. Lee, “LCD Microstereolithography of Photosensitive Resin with Functional Particles,” Int. J. of Automation Technology, Vol.2, No.3, pp. 182-189, 2008.
- [10] G. Zak, M. N. Sela, V. Vevko, C. B. Park, and B. Benhabib, “Layered Manufacturing of Fiber-Reinforced Composites,” Trans. of the ASME J. of Manufacturing Science and Engineering, Vol.121, pp. 448-456, 1999.
- [11] M. Haberer, G. Zak, C. B. Park, and B. Benhabib, “Design of a Slot-Coater Based Layered-Composites Manufacturing System,” Trans. of the ASME J. of Manufacturing Science and Engineering, Vol.125, pp. 564-576, 2003.
- [12] C. M. Cheah, J. Y. H. Fuh, A. Y. C. Nee, and L. Lu, “Mechanical Characteristics of Fiber-Filled Photo-Polymer used in Stereolithography,” Rapid Prototyping J., Vol.5, Issue 3, pp. 112-119, 1999.
- [13] S. Kumar, M. Hofmann, B. Steinmann, E. J. Foster, and C. Weder, “Reinforcement of Stereolithographic Resins for Rapid Prototyping with Cellulose Nanocrystals,” American Chemical Society Applied Materials & Interfaces, Vol.4, pp. 5399-5407, 2012.
- [14] H. Narahara, S. Takeshita, H. Fukumaru, H. Koresawa, and H. Suzuki, “Permeability Performance on Porous Structure of Injection Mold Fabricated by Metal Laser Sintering Combined with High Speed Milling,” Int. J. of Automation Technology, Vol.6, No.5, pp. 576-583, 2012.
- [15] H. Koresawa, H. Fukumaru, M. Kojima, J. Iwanaga, H. Narahara, and H. Suzuki, “Design Method for Inner Structure of Injection Mold Fabrication by Metal Laser Sintering,” Int. J. of Automation Technology, Vol.6, No.5, pp. 584-590, 2012.
- [16] T. Yoneyama, S. Abe, and M. Miyamaru, “Reducing Weld Line by Heating Mold Surface with Heater Embedded by Laser Metal Sintering,” Int. J. of Automation Technology, Vol.6, No.5, pp. 591-596, 2012.
- [17] T. Nakamoto and S. Kojima, “Layerd Thin Film Micro Parts Reinforced with Aligned Short Fibers in Laser Stereolithography by Applying Magnetic Field,” J. of Advanced Machanical Design, Systems, and Manufacturing, Vol.6, No.6, pp. 849-858, 2012.
- [18] T. Kawai and T. Kimura, “Magnetic Orientation of Isotactic Polypropylene,” Polymer, Vol.41, No.1, pp. 155-159, 2000.
- [19] T. Kimura, T. Kawai, and Y. Sakamoto, “Magnetic Orientation of Poly (Ethylene Terephthalate),” Polymer, Vol.41, No.2, pp. 809-812, 2000.
- [20] T. Kawai, R. Iijima, Y. Yamamoto, and T. Kimura, “Crystal Orientation of β–phase Isostatic Polypropylene Induced by Magnetic Orientation of N, -N’-dicyclohexyl-2, -6-naphthalenedicarboxamide,” Polymer, Vol.43, No.26, pp. 7301-7306, 2002.
- [21] Y. Kaneko, S. Shimada, T. Fukuda, T. Kimura, H. Yokoi, H. Matsuda, T. Onodera, H. Kasai, S. Okada, H. Oikawa, and H. Nakanishi, “A Novel Method for Fixing the Anisotropic Orientation of Dispersed Organic Nanocrystals in a Magnetic Field,” Advanced Materials, Vol.17, No.2, pp. 160-163, 2005.
- [22] Y. Nagai, Y. Ohtake, H. Suzuki, H. Hishida, K. Inagaki, and T. Nakamura, “Direction Estimation and Visualization of Yarns from CT Volumes of SiC Fabric,” Int. J. of Automation Technology, Vol.10, No.2, pp. 179-186, 2016.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.