Paper:
Effect of Different Solvents on Cu Micropatterns Formed via Femtosecond Laser Reduction Patterning
Mizue Mizoshiri†, Shun Arakane, Junpei Sakurai, and Seiichi Hata
Nagoya University
Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
†Corresponding author,
- [1] Y. P. Kathuria, “Microstructuring by selective laser sintering of metallic powder,” Surface and Coatings Technology, Vol.116-119, pp. 643-647, 1999.
- [2] Y. Tang, H. T. Loh, Y. S. Wong, J. Y. H. Fuh, L. Lu, and X. Wang, “Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts,” J. Mater. Process. Technol., Vol.140, pp. 368-372, 2003.
- [3] A. Simchi, F. Petzoldt, and H. Pohl, “On the development of direct metal laser sintering for rapid tooling,” J. Mater. Process. Technol., Vol.141, pp. 319-328, 2003.
- [4] A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, and T. Hanawa, “Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications,” J. Mech. Behav. Biomed. Mater., Vol.21, pp. 67-76, 2013.
- [5] T. Yoneyama and H. Kagawa, “Fabrication of Cooling Channels in the Injection Molding by Laser Metal Sintering,” Int. J. Automation Technol., Vol.2, pp. 162-167, 2008.
- [6] T. Nakamoto, N. Shirakawam, Y. Miyata, T. Sone, and H. Inui, “Selective Laser Sintering and Subsequent Gas Nitrocarburizing of Low Carbon Steel Powder,” Int. J. Automation Technol., Vol.2, pp. 168-174, 2008.
- [7] J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett., Vol.84, pp. 801-803, 2004.
- [8] S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink,” ACS Nano., Vol.7, pp. 5024-5031, 2013.
- [9] J. S. Kang, J. Ryu, H. S. Kim, and H. T. Hahn, “Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light,” J. Electron. Mater., Vol.40, pp. 2268-2277, 2011.
- [10] H. J. Hwang, W. H. Chung, and H. -S. Kim “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology, Vol.23, art. No.485205, 2012.
- [11] K. Woo, D. Kim, J. S. Kim, S. Lim, and J. Moon, “Ink-Jet Printing of Cu-Ag-Based Highly Conductive Tracks on a Transparent Substrate,” Langmuir, Vol.25, pp. 429-433, 2009.
- [12] B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-Step Fabrication of Copper Electrode by Laser-Induced Direct Local Reduction and Agglomeration of Copper Oxide Nanoparticle,” J. Phys. Chem. C, Vol.115, pp. 23664-23670, 2011.
- [13] D. Lee, D. Paeng, H. K. Park, and C. P. Grigoropoulo, “Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of NiO Nanoparticle Ink and Its Application to Transparent Conductors,” ACS Nano, Vol.8, pp. 9807-9814, 2014.
- [14] D. Paeng, D. Lee, J. Yeo, J.-H. Yoo, F. I. Allen, E. Kim, H. So, H. K. Park, A. M. Minor, and C. P. Grigoropoulos, “Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions,” J. Phys. Chem. C, Vol.119, pp. 6363-6372, 2015.
- [15] F. Paglia, D. Vak, J. van Embdem, A. S. R. Chesman, A. Martucci, J. J. Jasieniak, and E. D. Gaspera, “Photonic Sintering of Copper through the Controlled Reduction of Printed CuO Nanocrystals,” ACS Appl. Mater. Interfaces., Vol.7, pp. 25473-25478, 2015.
- [16] H. Lee and M. Yang, “Effect of solvent and PVP on electrode conductivity in laser-induced reduction process,” J. Appl. Phys. A. Vol.119, pp. 317-323, 2015.
- [17] S. Arakane, M. Mizoshiri, and S. Hata, “Direct patterning of Cu microstructures using femtosecond laser-induced CuO nanoparticle reduction,” Jpn. J. Appl. Phys., Vol.54, art. No.06FP07, 2015.
- [18] M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express, Vol.9, art. No.036701, 2016.
- [19] M. Mizoshiri, Y. Ito, S. Arakane, J. Sakurai, and S. Hata, “Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning,” Jpn. J. Appl. Phys., Vol.55, art. No.06GP05, 2016.
- [20] S. Xiao, L. Che, X. Li, and Y. Wang, “A cost-effective flexible MEMS technique for temperature sensing,” Microelectron. J., Vol.38, pp. 360-364, 2007.
- [21] A. Rydosz, “Amorphous and Nanocrystalline Magnetron Sputtered CuO Thin Films Deposited on Low Temperature Cofired Ceramics Substrates for Gas Sensor Applications,” IEEE Sens. J., Vol.14, pp. 1600-1607, 2014.
- [22] E. Comini, G. Sberveglieri, D. Barreca, C. Sada, D. Barreca, A. Gasparotto, C. Maccato, and E. Tondello “Chemical Vapor Deposition of Cu2O and CuO nanosystems for innovative gas sensors,” IEEE Sensors 2009 Conf., pp. 111-113, 2009.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.