IJAT Vol.10 No.5 pp. 794-803
doi: 10.20965/ijat.2016.p0794


Fabrication of Metallic Nanodot Arrays Using Nano-Chemical Stamping Technique with a Polymer Stamp

Potejana Potejanasak, Masahiko Yoshino, and Motoki Terano

Department of Mechanical and Control Engineering, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Corresponding author

March 28, 2016
July 5, 2016
September 5, 2016
nano-chemical stamping, gold nanodot, nanodot morphology and alignment, thermal dewetting, polymer film stamp

The aim of this study is to develop metallic nanodot arrays with controlled morphology and alignment. To produce gold nanodot arrays with high throughput, the authors propose a new efficient fabrication process based on the templated thermal dewetting method, using a nano-chemical stamping technique with a polymer mold. This process comprises four steps: sputter etching on a quartz glass substrate, patterning of micrometer size by printing with acetone on the substrate by stamping with a polymer film stamp, deposition of a thin Au film on the substrate, and self-organization of the metal nanodot arrays by thermal dewetting. A new method, using a cyclo-olefin polymer film mold for chemical patterning by nano-chemical stamping, was examined. Since the acetone stamped on the substrate reduces the surface energy and affects the contact angle of the gold nanodots, the gold nanodots are distributed along the stamped pattern. It is found that the pattern stamped with acetone on the substrate works as a template for the thermal dewetting process. The nano-chemical stamping technique is useful in controlling the size and distribution of the nanodots.

Cite this article as:
P. Potejanasak, M. Yoshino, and M. Terano, “Fabrication of Metallic Nanodot Arrays Using Nano-Chemical Stamping Technique with a Polymer Stamp,” Int. J. Automation Technol., Vol.10, No.5, pp. 794-803, 2016.
Data files:
  1. [1] X. Li, L. Jiang, Q. Zhan, J. Qian, and S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol.332, pp. 172-179, 2009.
  2. [2] D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidelines,” Prog. Electromagn. Res., Vol.12, pp. 203-23, 2012.
  3. [3] Y. M. Bae, K. H. Lee, J. Yang, and D. Heo, “Fabrication of gold nanodot array for the localized surface plasmon resonance,” J. Nanomaterials, Vol.2014, pp. 175670, 2014.
  4. [4] Y. Hong, Y. M. Huh, D. S. Yoon, and J. Yang, “Nanobiosensors based on localized surface plasmon resonancefor biomarker detection,” J. Nanomaterials, Vol.2012, pp. 759-830, 2012.
  5. [5] M. P. Raphael, J. A. Christodoulides, S. M. Mulvaney, M. M. Miller, J. P. Long, and J. M. Byers, “A new methodology for quantitative LSPR biosensing and imaging,” Anal. Chem., Vol.84, pp. 1367-1373, 2012.
  6. [6] H. J. Parab, C. Jung, J. H. Lee, and H. G. Park, “A gold nano-rod based optical DNA biosensor for the diagnos of pathogens,” Biosens. Bioelectron., Vol.26, pp. 667-67, 2010.
  7. [7] B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nanotoday, Vol.4, pp. 244-251, 2009.
  8. [8] M. Kajiura, T. Nakanishi, H. Iida, H. Takada, and T. Osaka, “Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label,” J. Colloid. Interf. Sci., Vol.33, No.5, pp. 140-145, 2009.
  9. [9] Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors, Vol.10, pp. 9397-9406, 2010.
  10. [10] J. Taniguchi, T. Manabe, and K. Ishikawa, “Fabrication of less than 20-nm-diameter nanodot arrays using inorganic “electron beam resist and post exposure bake”,” Int. J. of Automation Technology., Vol.5, No.3, pp. 349-352, 2011.
  11. [11] L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, J. Qiu, and G. Bi, “Spectral properties of nanoengineered Ag/Au bilayer rods fabricated by electron beam lithography,” Appl. Opt., Vol.50, No.28, pp. 5600-5605, 2011.
  12. [12] L. Petti, R. Capasso, M. Rippa, M. Pannico, P. L. Manna, G. Peluso, A. Calarco, E. Bobeico, and P. Musto, “A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications,” Vib. Spectrosc., Vol.12, pp. 22-30, 2016.
  13. [13] R. Yang, S. A. Soper, and W. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sensors and Actuators A: Physical, Vol.127, pp. 123-130, 2006.
  14. [14] R. Yang, D. L. Feeback, and W. Wang, “Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications,” Sensors and Actuators A: Physical, Vol.118, pp. 259-267, 2005.
  15. [15] Y. K. Yoon, J. H. Park, and M. G. Allen, “Multidirectional UV lithography for complex 3-D MEMS structures,” J. Microelectromech. Syst., Vol.15, No.5, pp. 1121-1130, 2006.
  16. [16] H. Shinohara, M. Fukuhara, T. Hirasawa, J. Mizuno, and S. Shoji, “Fabrication of magnetic nanodots arrays using UV nanoimprinting lithography and electrodeposition for high density patterned media,” J. Photopolym. Sci. Tec., Vol.21, No.4, pp. 591-596, 2008.
  17. [17] D. Li, L. Qin, D. X. Qi, F. Gao, R. W. Peng, J. Zou, Q. J. Wang, and M. Wang, “Tunable electric and magnetic resonances in multilayered metal/dielectric nanoplates at optical frequencies,” J. Phys. D: Appl. Phys., Vol.43, 345102, 2010.
  18. [18] M. J. Vasile, Z. Niu, R. Nassar, W. Zhang, and S. Liu, “Focused ion beam milling: Depth control for three-dimensional microfabrication,” J. Vac. Sci. Technol. B, Vol.15, No.6, 1997.
  19. [19] J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. of Automation Technology, Vol.3, No.1, pp. 84-88, 2009.
  20. [20] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol B., Vol.14, No.6, 1996.
  21. [21] B. Chen, M. Mokume, C. Liu, and K. Hayashi, “Structure and localized surface plasmon tuning of sputtered Au nano-islands through thermal annealing,” Vacuum, Vol.110, pp. 94-101, 2014.
  22. [22] T. D. Phuc, M. Yoshino, A. Yamanaka, and T. Yamamoto, “Effects of morphology of nanodots on localized surface plasmon resonance property,” Int. J. of Automation Technology, Vol.8, No.1, pp. 74-82, 2014.
  23. [23] H. J. Kim and D. E. Kim, “Frictional behavior of Ag nanodot-pattern fabricated by thermal dewetting,” Surf. Coat. Tech., Vol.215, pp. 234-240, 2013.
  24. [24] Y. M. Bae, K. H. Lee, J. Yang, and D. Heo, “Fabrication of gold nanodot array for the localized surface plasmon resonance,” J. Nanomater, Vol.2014, pp. 175670, 2014.
  25. [25] P. Potejana, M. Yoshino, M. Terano, and M. Mita, “Efficient fabrication process of metal nanodot arrays using direct nanoimprinting method with a polymer mold,” Int. J. Automation Technology, Vol.9, No.6, pp. 629-635, 2015.
  26. [26] E. A. Leed and C. G. Pantano, “Computer modeling of water adsorption on silica and silicate glass fracture surfaces,” J. Non-Cryst. Solids, Vol.325, pp. 48-60, 2003.
  27. [27] J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology, Fundamentals, Practice and Modeling,” Prentice Hall, 2000.
  28. [28] J. C. Mcmanusy, O. Arano, and M. J. D. Low, “Infrared study of the interactions of acetone and siliceous surfaces,” Can. J. Chem. Vol.47, pp. 2545-2554, 1969.
  29. [29] G. S. Shafai, S. Shetty, S. Krishnamurty, V. Shah, and D. G. Kanhere, “Density functional investigation of the interaction of acetone with small gold clusters,” J. Chem. Phys., Vol.126, 014704, 2007.
  30. [30] M. Yoshino, Z. Li, and M. Terano, “Theoretical and experimental study of metallic dot agglomeration induced by thermal dewetting,” ASME J. of Micro and Nano-Manufacturing, Vol.3, Issue 2, 021004.
  31. [31] T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Trans. of the Royal Society of London, Vol.95, pp. 65-87, 1805.
  32. [32] L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Serface Science, Vol.411, pp. 186-202, 1998.
  33. [33] G. A. Parks, “Surface and interfacial free energies of quartz,” J. Geophys. Res., Vol.89, pp. 3997-4008, 1984.
  34. [34] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett., Vol.83, pp. 4625-4627, 2003.
  35. [35] Z. Li, M. Yoshino, and A. Yamanaka, “Regularly-formed three-dimensional gold nanodot array with controllable optical properties,” J. Micromech. Microeng., Vol.24, pp. 045011, 2014.
  36. [36] S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV phtodetectors,” Nanotechnology, Vol.23, 444010, 2012.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 13, 2018