IJAT Vol.10 No.4 pp. 564-573
doi: 10.20965/ijat.2016.p0564


Surface Acoustic Wave Excitation Using a Pulse Wave

Ryo Tamon, Masaya Takasaki, and Takeshi Mizuno

Graduate School of Science and Engineering, Saitama University
255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan

Corresponding author,

December 26, 2015
June 6, 2016
July 5, 2016
surface acoustic wave, ultrasonic transducer
Surface acoustic waves (SAWs) excited by bursts of sinusoidal waves have been used in various applications. However, the SAW actuators used for this purpose are expensive because each SAW transducer must be equipped with a radio frequency linear amplifier and a function generator. To simplify the driving circuits of these actuators, SAW excitation using a pulse wave is proposed in this report. Simulated results for an equivalent circuit of a single interdigital transducer and measurements of SAWs excited by pulse waves are presented. The generation of tactile sensations using a SAW excited by a pulse wave is also reported. Furthermore, the power requirements for SAW excitation by a sinusoidal wave and by a pulse wave are compared.
Cite this article as:
R. Tamon, M. Takasaki, and T. Mizuno, “Surface Acoustic Wave Excitation Using a Pulse Wave,” Int. J. Automation Technol., Vol.10 No.4, pp. 564-573, 2016.
Data files:
  1. [1] M. Kurosawa, M. Takahashi, and T. Higuchi, “Friction drive surface acoustic wave motor,” Ultrasonics, Vol.34, pp. 243-246, 1996.
  2. [2] M. Kurosawa, M. Takahashi, and T. Higuchi, “Ultrasonic linear motor using surface acoustic waves,” IEEE Trans. Ultrason. Ferr., Vol.43, pp. 901-906, 1996.
  3. [3] M. K. Kurosawa, H. Itoh, and K. Asai, “Elastic friction drive of surface acoustic wave motor,” Ultrasonics, Vol.41, pp. 271-275, 2003.
  4. [4] Y. Nakamura, M. K. Kurosawa, T. Shigematsu, and K. Asai, “Effects of ceramic thin film coating on friction surfaces for surface acoustic wave linear motor,” IEEE Symp. Ultrason., pp. 1766-1769, 2003.
  5. [5] T. Shigematsu, M. K. Kurosawa, and K. Asai, “Nanometer stepping drives of surface acoustic wave motor,” IEEE Trans. Ultrason. Ferr., Vol.50, pp. 376-385, 2003.
  6. [6] T. Shigematsu and M. K. Kurosawa, “Miniaturized SAW motor with 100 MHz driving frequency,” 17th IEEE Int. Conf. Micro Electro Mech. Syst. Maastricht MEMS 2004 Tech. Dig., pp. 482-485, 2004.
  7. [7] K. Asai and M. K. Kurosawa, “Surface acoustic wave motor using an energy circulation driving method,” 2001 IEEE Ultrason. Symp. Proceedings. Annu. Int. Symp., pp. 525-529, 2001.
  8. [8] K. Asai, M.K. Kurosawa, and T. Higuchi, “Energy circulation methods for surface acoustic wave motor,” Electron. Comm. Jpn., Vol.3. No.87, pp. 10-19, 2004.
  9. [9] R. T. Tjeung, M. S. Hughes, L. Y. Yeo, and J. R. Friend, “Arbitrary axis rotating surface acoustic wave micro motor,” 2011 6th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., pp. 180-183, 2011.
  10. [10] M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sensor. Actuat. A-Phys., Vol.50, pp. 69-74 1995.
  11. [11] J.-W. Kim, Y. Yamagata, M. Takasaki, B.-H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sensor. Actuat. B-Chem., Vol.107, pp. 535-545, 2005.
  12. [12] J. Ju, Y. Yamagata, H. Ohmori, and T. Higuchi, “High-frequency surface acoustic wave atomizer,” Sensor. Actuat. A-Phys., Vol.145–146, pp. 437-441, 2008.
  13. [13] J. Ju, Y. Yamagata, H. Ohmori, and T. Higuchi, “Standing wave type surface acoustic wave atomizer,” Sensor. Actuat. A-Phys., Vol.147, pp. 570-575, 2008.
  14. [14] J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology, Vol.19, pp. 145-301, 2008.
  15. [15] A. Yamamoto, M. Nishimura, Y. Ooishi, N. Tsukada, and T. Higuchi, “Atomization and stirring of droplets using surface acoustic wave for integrated droplet manipulation,” J. Robot. Mechatron., Vol.18, No.2, pp. 146-152, 2006.
  16. [16] K. Chen, X. Fu, D. J. Dorantes-Gonzalez, Y. Li, S. Wu, and X. Hu, “Laser-generated surface acoustic wave technique for crack monitoring–a review,” Int. J. Autom. Technol., Vol.7, No.2, pp. 211-220, 2013.
  17. [17] R. Stoney, D. Geraghty, and G. E. O’Donnell, “Dynamic response analysis of passive wireless surface acoustic wave (SAW) strain sensors used for force measurement in turning,” Int. J. Autom. Technol., Vol.7, No.4, pp. 451-460, 2013.
  18. [18] T. Nara, M. Takasaki, T. Maeda, T. Higuchi, S. Ando, and S. Tachi, “Surface acoustic wave tactile display,” IEEE Comput. Graph., Vol.21, pp. 56-63, 2001.
  19. [19] M. Takasaki, T. Mizuno, and T. Nara, “Control parameters for an active type SAW tactile display,” 2004 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 4044-4049, 2004.
  20. [20] M. Takasaki, H. Kotani, T. Endo, T. Nara, and T. Mizuno, “Active type surface acoustic wave tactile display,” Trans. SICE, Vol.42, No.4, pp. 327-333, 2006 (in Japanese).
  21. [21] A. B. Bhattacharyya, S. Tuli, and S. Majurndar, “SPICE simulation of surface acoustic wave interdigital transducers,” IEEE Trans. Ultrason. Ferr., Vol.42, pp. 784-786, 1995.
  22. [22] J. Munshi and S. Tuli, “A circuit simulation compatible surface acoustic wave interdigital transducer macro-model,” IEEE Trans. Ultrason. Ferr., Vol.51, pp. 782-784, 2004.
  23. [23] T. Kojima and K. Shibayama, “An analysis of an equivalent circuit model for an interdigital surface-acoustic-wave transducer,” Jpn. J. Appl. Phys., Vol.27, p. 163, 1988.
  24. [24] T. Kojima, H. Obara, and K. Shibayama, “Investigation of impulse response for an interdigital surface-acoustic-wave transducer,” Jpn. J. Appl. Phys., Vol.29, p. 125, 1990.
  25. [25] M. Koshiba, S. Mitobe, and M. Suzuki, “Equivalent networks for surface acoustic wave metallic gratings,” Jpn. J. Appl. Phys., Vol.25, p. 133, 1986.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024