Paper:

# Non-Resonance Type Linear Ultrasonic Motor Using Multilayer Piezoelectric Actuators with Parallel Beams

## Manabu Aoyagi^{†}, Ryuichi Nakayasu, and Hidekazu Kajiwara

Graduate School of Engineering, Muroran Institute of Technology

27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan

^{†}Corresponding author,

A linear ultrasonic motor (LUSM) with two parallel beams and two multilayer piezoelectric actuators (MPAs) has been developed. The MPAs are aligned across the beams, and the force and displacement generated by the MPAs result in the deformation of the beams in the orthogonal direction. The LUSM has two types of operation modes: dynamic and static. In dynamic operation, the MPAs are driven by alternating voltages with a phase difference, and elliptical displacement motions are generated on the surfaces of the beams. Objects touching the surfaces of the beams can be moved in the same direction by friction. In addition, micro positioning is available over a wide range by combining dynamic and static operations. The characteristics of the LUSM include a maximum speed of 41 mm/s and a maximum thrust of 3.4 N at an operating voltage of 20 V_{p-p}. A movement range of approximately 8 μm has been confirmed during static operation.

*Int. J. Automation Technol.*, Vol.10, No.4, pp. 557-563, 2016.

- [1] T. Takano and Y. Tomikawa, “Characteristics of the ultrasonic linear motor using radial and nonaxisymmetric vibration modes of an annular plate,” Jpn. J. Appl. Phys., Vol.34, pp. 5288-5291, 1995.
- [2] F. Claeyssen, R. LeLetty, L. Chouteau, N. Lhermet, L. Petit, R. Briot, and P. Gonnard, “A new multi-mode piezoelectric motor,” Proc. SPIE Int. Soc. Opt. Eng., 2779, pp. 634-637, 1996.
- [3] M. K. Kurosawa, O. Kodaira, Y. Tsuchitoi, and T. Higushi, “Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Vol.45, No.5, pp. 1178-1187, 1998.
- [4] T. Morita, R. Yoshida, Y. Okamoto, M. K. Kurosawa, and T. Higuchi, “A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Vol.45, No.6, pp. 1439-1445, 1999.
- [5] C. K. Lim, S. Hi, I.-M. Chen, and S. H. Yeo, “A piezo-on-slider type linear ultrasonic motor for the application of positioning stages,” Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., pp. 103-108, 1999.
- [6] M. Aoyagi, S. P. Beeby, and N. M. White, “A novel multi-degree-of-freedom thick-film ultrasonic motor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Vol.49, No.2, pp. 151-158, 2002.
- [7] M. Aoyagi, F. Suzuki, Y. Tomikawa, and I. Kano, “High-speed thin ultrasonic spindle motor and Its application,” Jpn. J. Appl. Phys., Vol.43, pp. 2873-2878, 2004.
- [8] T. Muneishi and Y. Tomikawa, “Ultrasonic Linear motor with two independent vibrations,” Jpn. J. Appl. Phys., Vol.43, pp. 6728-6732, 2004.
- [9] K. Spanner, O. Vyshnevskyy, and W. Wischnewskiy, “New linear ultrasonic micromotor for precision mechatronic systems,” ACTUATOR 2006 conference proceedings, pp. 439-443, 2006.
- [10] U. Ueha and Y. Tomikawa, “Ultrasonic motors: Theory and Applications,” Clarendon Press Oxford, 1993.
- [11] T. Maeno, T. Tsukimoto, and A. Miyake, “Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Vol.39, No.6, pp. 668-674, 1992.
- [12] R. Yoshida, Y. Okamoto, T. Higuchi, and A. Hamamatsu, “Development of smooth impact drive mechanism (SIDM) – proposal of driving mechanism and basic performance,” J. Jpn. Soc. Precis. Eng., Vol.65, pp. 111-115, 1999 (in Japanese).
- [13] T. Funakubo, T. Tsubata, Y. Taniguchi, K. Kumei, T. Fujimura, and C. Abe, “Ultrasonic linear motor using multilayer piezoelectric actuator,” Jpn. J. Appl. Phys., Vol.34, pp. 2756-2759, 1995.
- [14] M. Kurosawa, H. Yamada, and S. Ueha, “Hybrid transducer type ultrasonic linear motor,” Jpn. J. Appl. Phys., Vol.28, pp. 158-160, 1989.
- [15] K. Ohnishi and K. Yamakoshi, “Ultrasonic linear actuator using coupled vibration,” J. Acoust. Soc. Jpn., Vol.11, No.4, pp. 235-241, 1990.
- [16] J. Toyoda and K. Murano, “A small-size ultrasonic linear motor,” Jpn. J. Appl. Phys., Vol.30, pp. 2274-2276, 1991.
- [17] H. Shine-Tzong, “Characteristics of the linear ultrasonic motor using an elliptical shape stator,” Jpn. J. Appl. Phys., Vol.45, pp. 6011-6013, 2006.
- [18] K. Mori, T. Kumagai, and H. Hirai, “Ultrasonic linear motor for a high precision X-Y stage,” Proc. IEEE Ultrason. Symp., Vol.1989, No.1, pp. 657-660, 1989.
- [19] S.-T. Ho and Y.-J. Shin, “Design of a Semi-Oval Shaped Ultrasonic Motor,” Int. J. of Automation Technology, Vol.7, pp. 537-543, 2013.
- [20] T. Endo, Y. Egashira, H. Furukawa, H. Hashiguchi, K. Kosaka, M. Watanabe, N. Miyata, S. Moriyama, S. Sasaki, A. Nakada, T. Ohmi, and H. Kubota, “Slip-Free Driving Method for Nonresonant Piezoelectric Actuator,” Jpn. J. Appl. Phys., Vol.44, pp. 5264-5268, 2005.
- [21] K. Nakamura, M. Kurosawa, and S. Ueha, “Characteristics of a hybrid transducer-type ultrasonic motor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Vol.38, pp. 188-193, 1991.
- [22] K. Uchino, Ferroelectric Devices, Marcel Dekker, Inc., New York, pp. 89-91, 2000.
- [23] K. Furutani, M. Urushibata, and N. Mohri, “Displacement control of piezoelectric element by feedback of induced charge,” Nanotechnology, Vol.9, pp. 93-98, 1998.
- [24] K. Furutani and T. Makino, “Influence of Matrix Circuit Switching Device Junction Capacitance on Piezoelectric Actuator Drive Performance,” Int. J. of Automation Technology, Vol.3, pp. 313-318, 2009.