IJAT Vol.10 No.4 pp. 525-532
doi: 10.20965/ijat.2016.p0525


Three-DOF Electrostatic Induction Actuator Providing Translational and Rotational Surface-Drive Motion

Norio Yamashita and Akio Yamamoto

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Corresponding author,

January 12, 2016
March 11, 2016
July 5, 2016
electrostatic actuator, induction actuator, Three-DOF, surface-drive

This paper describes the driving characteristics of a three degree-of-freedom (three-DOF) electrostatic induction actuator, which can demonstrate surface-drive characteristics with translational and rotational motions. It consists of a sheet-type slider without electrodes and a planar stator with an array of three-phase driving electrodes. The electrodes with different orientations are aligned in a regular manner to construct a four-by-four checkerboard pattern. Controlling applied voltage patterns can generate translational or rotational patterns of electrostatic fields, which drive the slider. The performance of the three-DOF actuator with regards to translational and rotational motion was investigated.

Cite this article as:
N. Yamashita and A. Yamamoto, “Three-DOF Electrostatic Induction Actuator Providing Translational and Rotational Surface-Drive Motion,” Int. J. Automation Technol., Vol.10, No.4, pp. 525-532, 2016.
Data files:
  1. [1] M. N. Ribuan, K. Suzumori, and S. Wakimoto, “New Pneumatic Rubber Leg Mechanism for Omnidirectional Locomotion,” IJAT, Vol.8, No.2, pp. 222-230, 2014.
  2. [2] T. Kosaki, Y. Morinaga, and M. Sano, “Prototype Development of a Parallel-Link Robot Actuated by Pneumatic Linear Drives with Variable Inclination Mechanisms,” IJAT, Vol.8, No.2, pp. 169-176, 2014.
  3. [3] X. Li, T. Noritsugu, M. Takaiwa, and D. Sasaki, “Design of Wearable Power Assist Wear for Low Back Support Using Pneumatic Actuators,” IJAT, Vol.7, No.2, pp. 228-236, 2013.
  4. [4] H. Inoue and T. Noritsugu, “Development of Upper-Limb Power-Assist Machine Using Linkage Mechanism – Mechanism and its Fundamental Motion –,” IJAT, Vol.8, No.2, pp. 193-200, 2014.
  5. [5] K. Amano and A. Yamamoto, “An Interaction on a Flat Panel Display Using a Planar 1-DOF Electrostatic Actuator,” Proc. ITS 2011, pp. 258-259, Nov. 2011.
  6. [6] K. Amano and A. Yamamoto, “Tangible Interactions on a Flat Panel Display Using Actuated Paper Sheets,” Proc. ITS 2012, pp. 351-354, Nov. 2012.
  7. [7] N. Yamashita, K. Amano, and A. Yamamoto, “Interaction with Real Objects and Visual Images on a Flat Panel Display using Three-DOF Transparent Electrostatic Induction Actuators,” ACHI 2014, pp. 294-299, Mar. 2014.
  8. [8] C. H. Yun, L. Y. Yeo, J.R. Friend, and B. Yan, “Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The NeuroGlide actuator.” Applied Physics Letters 100.16, 164101, 2012.
  9. [9] C. H. Rhee, J. S. Pulskamp, R. G. Polcawich, and K. R. Oldham, “Multi-degree-of-freedom thin-film PZT-actuated microrobotic leg,” Journal of Microelectromechanical Systems, 21.6, pp. 1492-1503, 2012.
  10. [10] W. M. Chen and T. S. Liu, “Modeling and experimental validation of new two degree-of-freedom piezoelectric actuators,” Mechatronics, Vol.23, No.8, pp. 1163-1170, 2013.
  11. [11] J. de Boeij, E. Lomonova and A. Vandenput, “Modeling ironless permanent-magnet planar actuator structures,” IEEE Trans. Magn., Vol.42, No.8, pp. 2009 -2016, 2006.
  12. [12] J. W. Jansen, C. M. M. van Lierop, E. A. Lomonova, and J. A. Vandenput, “Magnetically levitated planar actuator with moving magnets,” IEEE Trans. Ind. Appl., Vol.44, No.4, pp. 1108-15, 2008.
  13. [13] W. Min, M. Zhang, Y. Zhu, B. Chen, G. Duan, J. Hu, and W. Yin, “Analysis and optimization of a new 2-D magnet array for planar motor,” IEEE Trans. Magn., Vol.46, No.5, pp. 1167-71, 2010.
  14. [14] T. Hosobata and A. Yamamoto, “Mixed Reality System on Flat Panel Display with Real Object Driven by Synchronous Transparent Electrostatic Actuator,” Proc. Int. Conf. Multimedia and Human Computer Interaction, pp. 127-1-127-7, July 2013.
  15. [15] S. Egawa, T. Niino, and T. Higuchi, “Film Actuators: Planar Electrostatic Surface-Drive Actuators,” Proc. 1991 IEEE MEMS, pp. 9-14, Jan.-Feb.1991.
  16. [16] T. Niino, T. Higuchi, and S. Egawa, “Dual excitation multiphase electrostatic drive,” Proc. IEEE Ind. Appl. Conf., pp. 1318-1325, 1995.
  17. [17] N. Yamashita, Z. G. Zhang, A. Yamamoto, M. Gondo, and T. Higuchi, “Voltage-induction type electrostatic film motor driven by two-to four-phase AC voltage and electrostatic induction,” Sens. Actuators A: Phys., Vol.140, No.2, pp. 239-50, 2007.
  18. [18] T. Hosobata, A. Yamamoto, and T. Higuchi, “2-DOF Synchronous Electrostatic Actuator with Transparent Electrodes Arranged in Checkerboard Patterns,” Proc. 2013 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 4919-4924, Nov. 2013.
  19. [19] A. Yamamoto, S. Tsuruta, and T. Higuchi, “Planar 3-DOF Paper Sheet Manipulation Using Electrostatic Induction,” Proc. 2010 IEEE ISIE, pp. 493-498, July 2010.
  20. [20] S. Egawa and T. Higuchi, “Multi-layered electrostatic film actuator,” Proc. 1990 IEEE MEMS, pp. 166-171, Feb. 1990.
  21. [21] T. Tram, A. Maeda, and A. Yamamoto, “Effect of Traveling Voltage Wavelength on Electrostatic Induction Actuators Driving Performance,” Proc JSPE 2013S, 1105-1106, 2013.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 13, 2018