single-au.php

IJAT Vol.10 No.4 pp. 487-493
doi: 10.20965/ijat.2016.p0487
(2016)

Paper:

Modeling and Force Control of Thin Soft McKibben Actuator

Ahmad Athif Mohd Faudzi*,***,†, Noor Hanis Izzuddin Mat Lazim**, and Koichi Suzumori***

*Center for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia
Johor Bahru, Johor 81310, Malaysia

Corresponding author,

**Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia

***Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, Tokyo, Japan

Received:
January 6, 2016
Accepted:
May 6, 2016
Published:
July 5, 2016
Keywords:
system identification, thin soft actuator, ARX model, force control, PID-PSO
Abstract

This paper presents the modeling of a thin soft McKibben actuator using the system identification (SI) method and its force control. Procedures from the system identification method are used to create a mathematical model (transfer function) from the test data. The autoregressive with exogenous input (ARX) model was chosen as the model structure of the system. Next, a PSO-PID controller was proposed for the force control of the actuator. The simulation data were verified against the test data for the force control using PSO-PID and conventional PID. Results showed that the developed model represents the actual system by giving the same characteristics in the force control analysis in step, multi-step, and sinusoidal input.

Cite this article as:
A. Faudzi, N. Lazim, and K. Suzumori, “Modeling and Force Control of Thin Soft McKibben Actuator,” Int. J. Automation Technol., Vol.10, No.4, pp. 487-493, 2016.
Data files:
References
  1. [1] K. Suzumori, T. Maeda et al., “Fiberless flexible microactuator designed by finite-element method,” Mechatronics, IEEE/ASME Transactions on Vol.2, No.2, pp. 281-286, 1997.
  2. [2] K. Suzumori, T. Hama et al., “New pneumatic rubber actuators to assist colonoscope insertion,” Proc. IEEE Int. Conf. on Robotics and Automation, ICRA, pp. 1824-1829, 2006.
  3. [3] A. A. M. Faudzi, K. Suzumori, and S. Wakimoto, “Development of an Intelligent Pneumatic Cylinder for Distributed Physical Human-Machine Interaction,” Advanced Robotics Vol.23, pp. 203-225, 2009.
  4. [4] H. F Schulte, “The characteristics of the McKibben artificial muscle,” Appl. Extern. Power Prosthet. Orthetics, Vol.874, pp. 94-115, 1961.
  5. [5] I. N. A. Mohd Nordin, M. R. Muhammad Razif, A. A. M. Faudzi, E. Natarajan, K. Iwata, and K. Suzumori, “3-D finite-element analysis of fiber-reinforced soft bending actuator for finger flexion,” IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 128-133, 2013.
  6. [6] D. Sasaki, T. Noritsugu, and M. Takaiwa, “Development of Active Support Splint Driven by Pneumatic Soft Actuator (ASSIST),” JRM, Vol.16 No.5, pp. 497-503, 2014.
  7. [7] Polygerinos, P., Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh. “Soft Robotic Glove for Combined Assistance and at-Home Rehabilitation,” J. of Robotics and Autonomous Systems, Vol.73, pp. 135-143 2014.
  8. [8] D. Trivedi, C. D. Rahn, W. M. Kierb, and I. D. Walkerc, “Soft robotics: Biological inspiration, state of the art, and future research,” Applied Bionics and Biomechanics, Vol.5, No.3, pp. 99-117, 2008.
  9. [9] M. N. Ribuan, K. Suzumori, and S. Wakimoto, “New Pneumatic Rubber Leg Mechanism for Omnidirectional Locomotion,” IJAT Vol.8 No.2, pp. 222-230, 2014.
  10. [10] N. Saga, J. Nagase, and Y. Kondo, “Development of a Tendon-Driven System Using a Pneumatic Balloon,” JRM, Vol.18 No.2, pp. 139-145, 2006.
  11. [11] M. Yamano and N. Ogawa, “A contraction type soft actuator using Poly Vinyl Chloride gel,” pp. 745-750 2009.
  12. [12] T. Tominaga, K. Senda, N. Ohya, and T. Hattori, “Bending and expanding motion actuators,” Vol.54, pp. 760-764, 1996.
  13. [13] K. Jung, J. Nam, and H. Choi, “Investigations on actuation characteristics of IPMC artificial muscle actuator,” Sensors and Actuators A, Vol.107, pp. 183-192, 2003.
  14. [14] K. Iwata, K. Suzumori, and S. Wakimoto, “A Method of designing and fabricating Mckibben muscles driven by 7 MPa hydraulics,” Int. J. Autom. Technol., Vol.6, No.4, pp. 482-487, 2012.
  15. [15] L. A. Zadeh, “From Circuit Theory to System Theory,” Proc. of the IRE, Vol.50, pp. 856-865, 1962.
  16. [16] A. Zorlu, C. Ozsoy, and A. Kuzucu, “Experimental modeling of a pneumatic system,” in Emerging Technologies and Factory Automation. Proc. ETFA ’03. IEEE Conf., pp. 453-461, 2003.
  17. [17] A. K. Kwan and A. H. P. Huy, “System Modeling and Identification the Two-Link Pneumatic Artificial Muscle (PAM) Manipulator Optimized with Genetic Algorithms,” in SICE-ICASE Int. Joint Conf., pp. 4744-4749, 2006.
  18. [18] H. Jahanabadi, M. Mailah, M.Z.M. Zain, and H.M. Hooi, “Active Force with Fuzzy Logic Control of a Two-Link Arm Driven by Pneumatic Artificial Muscles,” J. of Bionic Engineering, Vol.8, pp. 474-484, 2011.
  19. [19] M. Takaoka, K. Suzumori, S. Wakimoto, K. Iijima, and T. Tokumiya, “Fabrication of Thin McKibben Artificial Muscles with Various Design Parameters and Their Experimental Evaluations,” Proc. ICMDT, p. 82, 2013.
  20. [20] M. Jelali and H. Schwarz. “Nonlinear identification of hydraulic servo-drive systems,” IEEE Control Systems Magazine, Vol.15, No.5, pp. 17-22, 1995.
  21. [21] M. E. Essa, M. A. Aboelela, and M. A. M. Hassan, “Position control of hydraulic servo system using proportional-integral-derivative controller tuned by some evolutionary techniques,” J. Vib Control, pp. 1-12, 2014.
  22. [22] K. J. Åström and T. Hägglund, “The future of PID control,” Control Eng. Pract., Vol.9, No.11, pp. 1163-1175, 2011.
  23. [23] K. Iwata, K. Suzumori, and S. Wakimoto, “Development of Contraction and Extension Artificial Muscles with Different Braid Angles and Their Application to Stiffness Changeable Bending Rubber Mechanism by Their Combination,” JRM, Vol.23 No.4, pp. 582-588, 2011.
  24. [24] S. Davis, “Braid effects on contractile range and friction modeling in Pneumatic Muscle Actuators,” Int. J. Rob. Res., Vol.25, No.4, pp. 359-369, 2006.
  25. [25] I. N. A. Mohd Nordin, A. A. M. Faudzi, K. Suzumori, and S. Wakimoto “Simulations of Fiber Braided Bending Actuator:Investigation on Position of Fiber Layer Placement and Air Chamber Size,” Proc. ASCC Kota Kinabalu, pp. 1-5, 2015.
  26. [26] L. Ljung, “System Identification Toolbox for use with MATLAB,” The MathWorks, Inc., www.mathworks.com/ products/sysid, 2002.
  27. [27] K. J. Åström and B. Wittenmark, “Computer-Controlled Systems, third edition.” Prentice Hall., 1997.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 11, 2018