IJAT Vol.10 No.3 pp. 438-446
doi: 10.20965/ijat.2016.p0438


Augmented Reality in Peg-in-Hole Microassembly Operations

Ren-Jung Chang and Jia-Cheng Jau

Mechanical Engineering Department, National Cheng Kung University
No. 1 University Rd., Tainan 70101, Taiwan, ROC

Corresponding author, E-mail:

December 8, 2015
March 22, 2016
May 2, 2016
microassembly, augmented reality, vision-based, peg-in-hole

Augmented-reality (AR) technology was implemented for vision-based microassembly operations. A computer aided design (CAD) model for a virtual microassembly system was generated and calibrated using data from a real system to simulate the same image features in a virtual environment. By employing static AR, a hidden feature of a mating hole in a rod was reconstructed in an image. In real-time operation, a dynamic AR system was implemented to handle the issue of difference in velocities of a moving object between the virtual environment and real system. By utilizing the image from the AR system, the performance in manual and automatic assembly was experimentally tested. The assembly time and failure rate in automation were compared with those obtained in a visual servo without utilizing AR. The advantages of employing AR for the peg-in-hole microassembly were identified.

Cite this article as:
R. Chang and J. Jau, “Augmented Reality in Peg-in-Hole Microassembly Operations,” Int. J. Automation Technol., Vol.10, No.3, pp. 438-446, 2016.
Data files:
  1. [1] K. B. Yesin and B. J. Nelson, “A CAD model based tracking system for visually guided microassembly,” Robotica, Vol.23, pp. 409-418, 2005.
  2. [2] D. Gendreau, M. Gauthier, D. Heriban, and P. Lutz, “Modular architecture of the microfactories for automatic micro-assembly,” J. Rob. Comp. Integ. Manuf., Vol.26, No.4, pp. 354-360, 2010.
  3. [3] R. J. Chang, C. Y. Lin, and P. S. Lin, “Visual-based automation of peg-in-hole microassembly process,” ASME, J. Manuf. Sci. Eng., pp. 133-4, 2011.
  4. [4] R. J. Chang and J. C. Jau, “Error measurement and calibration in developing virtual-reality-assisted microassembly system,” Int. J. Auto. Tech., Vol.9, No.6, pp. 619-628, 2015.
  5. [5] J. Cecil, M. B. R. Kumar, Y. Lu, and V. Basallali, “A review of micro-devices assembly techniques and technology,” Int. J. Adv. Manuf. Technol., pp. 1-13, 2015.
  6. [6] R. T. Azuma, “A survey of augmented reality,” Presence, Teleop. Virt. Environ., Vol.6, No.4, pp. 355-385, 1997.
  7. [7] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual displays,” IEICE Trans. Info. Syst., Vol.77, No.12, pp. 1321-1329, 1994.
  8. [8] T. P. Caudell and D. W. Mizell, “Augmented reality: An application of heads-up display technology to manual manufacturing processes,” Proc. 25th Hawaii Int. Conf. Syst. Sci., Vol.2, pp. 659-669, 1992.
  9. [9] D. Reiners, D. Stricker, G. Klinker, and S. Müller, “Augmented reality for construction tasks: doorlock assembly,” Proc. IEEE and ACM IWAR, Vol.98, No.1, pp. 31-46, 1998.
  10. [10] V. Raghavan, J. Molineros, and R. Sharma, “Interactive evaluation of assembly sequences using augmented reality,” IEEE Trans. Rob. Autom., Vol.15, No.3, pp. 435-449, 1999.
  11. [11] A. C. Boud, D. J. Haniff, C. Baber, and S. J. Steiner, “Virtual reality and augmented reality as a training tool for assembly tasks,” Proc. IEEE Int. Conf. Info. Visual., pp. 32-36, 1999.
  12. [12] K. M. Baird and W. Barfield, “Evaluating the effectiveness of augmented reality displays for a manual assembly task,” Virt. Real., Vol.4, No.4, pp. 250-259, 1999.
  13. [13] G. Reinhart and C. Patron, “Integrating augmented reality in the assembly domain- fundamentals, benefits and applications,” CIRP Annals- Manuf. Tech., Vol.52, No.1, pp. 5-8, 2003.
  14. [14] A. Tang, C. Owen, F. Biocca, and W. Mou, “Comparative effectiveness of augmented reality in object assembly,” Proc. SIGCHI Conf. Hum. Fact. Compu. Syst., pp. 73-80, 2003.
  15. [15] S. Wiedenmaier, O. Oehme, L. Schmidt, and H. Luczak, “Augmented reality (AR) for assembly processes design and experimental evaluation,” Int. J. Hum.-Comp. Inter., Vol.16, No.3, pp. 497-514, 2003.
  16. [16] J. Zauner, M. Haller, A. Brandl, and W. Hartman, “Authoring of a mixed reality assembly instructor for hierarchical structures,” Proc. 2nd IEEE/ACM Int. Symp. Mixed and Aug. Real., pp. 237-246, 2003.
  17. [17] A. Liverani, G. Amati, and G. Caligiana, “A CAD-augmented reality integrated environment for assembly sequence check and interactive validation,” Concur. Eng., Vol.12, No.1, pp. 67-77, 2004.
  18. [18] N. Pathomaree and S. Charoenseang, “Augmented reality for skill transfer in assembly task,” IEEE Int. Wksp. Rob. Hum. Inter. Comm., pp. 500-504, 2005.
  19. [19] Y. Pang, A. Y. Nee, S. K. Ong, M. Yuan, and K. Youcef-Toumi, “Assembly feature design in an augmented reality environment,” Assem. Autom., Vol.26, No.1, pp. 34-43, 2006.
  20. [20] S. Siltanen, M. Hakkarainen, O. Korkalo, T. Salonen, J. Saaski, C. Woodward, T. Kannetis, M. Perakakis, and A. Potamianos, “Multimodal user interface for augmented assembly,” IEEE 9th Wksp. Mume. Sig. Process., 2007.
  21. [21] S. K. Ong, Y. Pang, and A. Y. C. Nee, “Augmented reality aided assembly design and planning,” CIRP Annals- Manuf. Tech. Vol.56, No.1, pp. 49-52, 2007.
  22. [22] J. Sääski, T. Salonen, M. Hakkarainen, S. Siltanen, C. Woodward, and J. Lempiäinen, “Integration of design and assembly using augmented reality,” Micro-Assem. Tech. Appl., Vol.260, S. Ratchev and S. Koelemeijer, Eds. Boston: Springer, pp. 395-404, 2008.
  23. [23] M. L. Yuan, S. K. Ong, and A. Y. C. Nee, “Augmented reality for assembly guidance using a virtual interactive tool,” Int. J. Prod. Res., Vol.46, No.7, pp. 1745-1767, 2008.
  24. [24] K. H. Seok and Y. S. Kim, “A study on providing prompt assembly information using AR manual,” 3rd Int. Conf. Conv. Hybrid. Info. Tech., 2008.
  25. [25] M. Hakkarainen, C. Woodward, and M. Billinghurst, “Augmented assembly using a mobile phone,” 7th IEEE/ACM Int. Symp. Mixed Aug. Real., 2008.
  26. [26] P. P. Valentini, “Interactive virtual assembling in augmented reality,” Int. J. Interact. Des. Manuf., Vol.3, pp. 109-119, 2009.
  27. [27] S. Li, T. Peng, C. Xu, Y. Fu, and Y. Liu, “A mixed reality-based assembly verification and training platform,” Virt. Mixed Real., pp. 576-585, 2009.
  28. [28] J. Z. Song, Q. X. Jia, H. X. Sun, and X. Gao, “Study on the perception mechanism and method of virtual and real objects in augmented reality assembly environment,” 4th IEEE Conf. Ind. Electron. Appl., pp. 1452-1456, 2009.
  29. [29] S. Webel, U. Bockholt, and J. Keil, “Design criteria for AR-based training of maintenance and assembly tasks,” Proc. Int. Conf. Virt. Mixed Real., Orlando, FL, Vol.6773, pp. 123-132, 2011.
  30. [30] A. Gharsellaoui, J. Oliver, and S. Garbaya, “Benchtop augmented reality interface for enhanced manual assembly,” Proc. IEEE Aerospace Conf., Toulouse, France, 2011.
  31. [31] G. Westerfield, A. Mitrovic, and M. Billinghurst, “Intelligent augmented reality training for assembly tasks,” 16th Int. Conf. Artif. Intel. Edu., Lecture Notes in Artificial Intelligence, Vol.7926, pp. 542-551, 2013.
  32. [32] R. Radkowski, J. Herrema, and J. Oliver, “Augmented reality-based manual assembly support with visual features for different degrees of difficulty,” Int. J. Hum.-Comp. Intera., Vol.31, Issu.5, pp. 337-349, 2015.
  33. [33] D. O. Popa and H. E. Stephanou, “Micro and mesoscale robotic assembly,” J. Manuf. Processes,Vol.6, Issu.1, pp. 52–71, 2004.
  34. [34] C. Tietje and S. Ratchev, “Design for microassembly- a methodology for product design and process selection,” IEEE Int. Symp. Assem. Manuf., pp. 178-183, 2007.
  35. [35] D. E. Whitney, “Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development,” Vol.1, Oxford University Press, 2004.
  36. [36] R. S. Wright, N. Haemel, and G. Sellers, “OpenGL SuperBible: Comprehensive Tutorial and Reference,” Pearson Education, 2010.
  37. [37] R. J. Chang and C. C. Chen, “Using microgripper in development of automatic adhesive glue transferring and binding microassembly system,” Engineering, Vol.2, pp. 1-11, 2010.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Feb. 18, 2019