Technical Paper:
Anisotropic Stiffness Design for Mechanical Parts Fabricated by Multi-Material Additive Manufacturing
Toshitake Tateno†
Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
†Corresponding author,
- [1] I. Gibson, D. Rosen, and B. Stucker, “Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing,” 2nd ed., Springer, 2014.
- [2] P. Bartolo, J. P. Kruth, J. Silva, G. Levy, A. Malshe, K. Rajurkar, M. Mitsuishi, J. Ciurana, and M. Leu, “Biomedical production of implants by additive electro-chemical and physical processes,” CIRP Annals – Manufabturing Technology, Vol.61, pp. 635–655, 2012.
- [3] R. V. Noort, “The future of dental devices is digital,” Dental Materials, Vol.28, pp. 3–12, 2012.
- [4] M. Tomlin and J. Meyer, “Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part,” Altair CAE Technology Conf., 2011.
- [5] H. Koresawa, H. Fukumaru, M. Kojima, J. Iwanaga, H. Narahara, and H. Suzuki, “Design Method for Inner Structure of Injection Mold Fabricated by Metal Laser Sintering,” Int. J. of Automation Technology, Vol.6, No.5, pp. 591–596, 2012.
- [6] H. V. Wang, “A Unit Cell Approach for Lightweight Structure and Compliant Mechanism,” Georgia Institute of Technology, 2005.
- [7] H. Narahara, S. Takeshita, H. Fukumaru, H. Koresawa, and H. Suzuki, “Permeability Performance on Porous Structure of Injection Mold Fabricated by Metal Laser Sintering Combined with High Speed Milling,” Int. J. of Automation Technology, Vol.6, No.5, pp. 584–590, 2012.
- [8] T. Nakamoto, N. Shirakawa, K. Kishida, K. Tanaka, and H. Inui, “Synthesis of Porous Titanium with Directional Pores by Selective Laser Melting,” Int. J. of Automation Technology, Vol.6, No.5, pp. 604–610, 2012.
- [9] M. Vaezi, S. Chianrabutra, B. Mellor, and S. Yang, “Multiple material additive manufacturing – Part 1; review,” Virtual and Physical Prototyping, Vol.8, No.1, pp. 19–50, 2013.
- [10] A. M. M. S. Ulah, H. Hashimoto, A. Kubo, and J. Tamaki, “Sustainability analysis of rapid prototyping: maerial/resource and process perspectives,” Int. J. of Sustainable Manufacturing, Vol.3, No.1, pp. 20–36, 2013.
- [11] A. M. M. S. Ulah, A. Fuji, A. Kubo, and J. Tamaki, “Analyzing the Sustainability of Biometallic Components,” In. J. of Automation Technology, Vol.8, No.5, pp. 745–753, 2014.
- [12] M. Tomlin and J. Meyer, “Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part,” Altair CAE Technology Conf., Optimal design, 2011.
- [13] D. W. Rosen, “Computer-aided design for additive manufacturing of cellular structures,” Computer-Aided Design & Application, Vol.4, No.5, pp. 585–594, 2007.
- [14] X. Huang, A. Radman, and Y. M. Xie, “Topological design of microstructures of cellular materilas for maximum bulk or shear modulus,” Computational Materials Science, Vol.50, No.6, pp. 1861–1870, 2011.
- [15] L. Yang, O. Harrysson, H. West, and D. Cornier, “Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing,” Int. Journal of Solid and Structures, Vols.69–70, pp. 475–490, 2015. Y. Tag, A. Kuruz, and Y. F. Zhao, “Bidirectional Evolutionary Structural Optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing,” Computer-Aided Design, Vol.69, pp. 91–101, 2015.
- [16] H. Makino, “Development of the SCARA,” Journal of Robotics and Mechatronics, Vol.26, No.1, pp. 5–8, 2014.
- [17] A. Shimada, “Servo System Design Considering Low-Stiffness of Robot,” Journal of Robotics and Mechatronic, Vol.8, No.3, pp. 252–258, 1996.
- [18] H. Seki, Y. Kamiya, and M. Hikizu, “Planar Manipulator with Mechanically Adjustable Joint Compliance,” Int. J. of Automation Technology, Vol.6, No.1, pp. 46–52, 2012.
- [19] A. Midha, T. W. Norton, and L. L. Howell, “On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms,” ASME, J. of Mechanical Design., Vol.116, No.1, pp. 270–279, 1994.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.