IJAT Vol.9 No.6 pp. 629-635
doi: 10.20965/ijat.2015.p0629


Efficient Fabrication Process of Metal Nanodot Arrays Using Direct Nanoimprinting Method with a Polymer Mold

Potejana Potejanasak*, Masahiko Yoshino*, Motoki Terano*, and Masahiro Mita**

*Department of Mechanical and Control Engineering, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

** Kyodo International Inc.
2-10-9 Miyazaki, Miyamae-ku, Kawasaki-shi, Kanagawa 216-003, Japan

May 1, 2015
September 16, 2015
November 5, 2015
gold nanodot, direct nanoimprinting, nanodot alignment and morphology, thermal dewetting, cyclo olefin polymer film

A new fabrication process of metal nanodot arrays using the thermal dewetting method was developed in this study. This process was comprised of three steps: thin Au film deposition on a quartz glass substrate, groove patterning by direct nanoimprinting, and self-organization of metal nanodot arrays by thermal dewetting. A new idea to utilize a polymer film mold for groove patterning by direct nanoimprinting was examined. The polymer film mold was prepared by hot-embossing groove patterns of a mother mold on a cyclo olefin polymer (COP) film. The mother mold was prepared from a silicon wafer. The polymer film mold was used for direct nanoimprinting on a metal film deposited on a quartz substrate. The experimental results revealed that the COP film mold can effectively form a micro groove pattern on the Au film despite the COP film mold being softer than the Au film. The micro groove on the Au film was also found to be effective in aligning the nanodots in lines. The micro groove patterning using the COP film mold was also confirmed to be useful in controlling the dot size and alignment during the thermal dewetting process.

Cite this article as:
P. Potejanasak, M. Yoshino, M. Terano, and M. Mita, “Efficient Fabrication Process of Metal Nanodot Arrays Using Direct Nanoimprinting Method with a Polymer Mold,” Int. J. Automation Technol., Vol.9, No.6, pp. 629-635, 2015.
Data files:
  1. [1]  D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidelines,” Prog. Electromagn. Res., Vol.126, pp. 203-235, 2012.
  2. [2]  Y. Hong, Y. M. Huh, D. S. Yoon, and J. Yang, “Nanobiosensors based on localized surface plasmon resonance for biomarker detection,” J. Nanomaterials., Vol.2012, pp. 759-830, 2012.
  3. [3]  M. P. Raphael, J. A. Christodoulides, S. M. Mulvaney, M. M. Miller, J. P. Long, and J. M. Byers,“A new methodology for quantitative LSPR biosensing and imaging,” Anal. Chem., Vol.84, pp. 1367-1373, 2012.
  4. [4]  H. J. Parab, C. Jung, J. H. Lee, and H. G. Park, “A gold nano-rod based optical DNA biosensor for the diagnos of pathogens,” Biosens. Bioelectron., Vol.26, pp. 667-67, 2010.
  5. [5]  B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nanotoday, Vol.4, pp. 244-251, 2009.
  6. [6]  M. Kajiura, T. Nakanishi, H. Iida, H. Takada, and T. Osaka, “Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label,” J. Colloid. Interf. Sci., Vol.335, pp. 140-145, 2009.
  7. [7]  D. Li, L. Qin, D. X. Qi, F. Gao, R. W. Peng, J. Zou, Q. J. Wang, and M. Wang, “Tunable electric and magnetic resonances in multilayered metal/dielectric nanoplates at optical frequencies,” J. Phys. D: Appl. Phys., Vol.43, 345102, 2010.
  8. [8]  Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors, Vol.10, pp. 9397-9406, 2010.
  9. [9]  J. Taniguchi, T. Manabe, and K. Ishikawa, “Fabrication of less than 20-nm-diameter nanodot arrays using inorganic “electron beam resist and post exposure bake”,” Int. J. of Automation Technology., Vol.5, No.3, pp. 349-352, 2011.
  10. [10]  L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, J. Qiu, and G. Bi, “Spectral properties of nanoengineered Ag/Au bilayer rods fabricated by electronbeam lithography,” Appl. Opt., Vol.50, No.28, pp. 5600-5605, 2011.
  11. [11]  Y. K. Yoon, J. H. Park, and M. G. Allen, “Multidirectional UV lithography for complex 3-D MEMS structures,” J. Microelectromech. Syst., Vol.15, No.5, pp. 1121-1130, 2006.
  12. [12]  H. Shinohara, M. Fukuhara, T. Hirasawa, J. Mizuno, and S. Shoji, “Fabrication of magnetic nanodots arrays using UV nanoimprinting lithography and electrodeposition for high density patterned media,” J. Photopolym. Sci. Tec., Vol.21, No.4, pp. 591-596, 2008.
  13. [13]  M. Yoshino, N. Umehara, and S. Aravindan, “Development of functional surface by nano-plastic forming,” Wear., Vol.26, pp. 581-584, 2009.
  14. [14]  W. Kurnia and M. Yoshino, “Nano/micro structure fabrication of metal surface using the combination of nanoplastic forming, coating and roller imprinting processes,” J. Micromech. Microeng. Vol.19, 125028, 2009.
  15. [15]  M. Yoshino, M. Terano, R. Hotoda, and M. Mita, “Development of a nano structured foil mold for the templated thermal dewetting of a nanodot array,” Proc. of Conf. of the JSME/ASME 2014 Int. Conf. on Materials and Processing (ICMP2014), 2014.
  16. [16]  C. H. Yao, C. L. Wu, and C. K. Sung, “Effects of thin film properties on metallic pattern formation by direct nano imprinting,” J. Mater. Process. Technol., Vol.201, pp. 765-769, 2008.
  17. [17]  S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett., Vol.67, No.21, pp. 3114-3116, 1995.
  18. [18]  B. Chen, M. Mokume, C. Liu, and K. Hayashi, “Structure and localized surface plasmon tuning of sputtered Au nano-islands through thermal annealing,” Vacuum, Vol.110, pp. 94-101, 2014.
  19. [19]  T. D. Phuc, A. Yamanaka, and M. Yoshino, “Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods,” J. Micromech. Microeng., Vol.21, 125017, pp. 1-9, 2011.
  20. [20]  T. D. Phuc, M. Yoshino, A. Yamanaka, and T. Yamamoto, “Effects of morphology of nanodots on localized surface plasmon resonance property,” Int. J. of Automation Technology., Vol.8, No.1, pp. 74-82, 2014.
  21. [21]  D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles basics and applications,” J. Phys. D: Appl, Phys., Vol.47, 013001, 2014.
  22. [22]  M. Ramos, L. O. Jordan, A. H. Macias, S. Flores, J. T. Elizalde-Galindo, C. Rocha, B. Torres, M. Z. Chaleshtori, and R. R. Chianelli, “Hardness and elastic modulas on six-fold symmetry gold nanoparticles,” Materials., Vol.6, pp. 198-205, 2013.
  23. [23]  M. Yoshino, Z. Li, and M. Terano, “Theoretical and experimental study of metallic dot agglomeration induced by thermal dewetting,” ASME J. of Micro and Nano-Manufacturing, Vol.3, Issue 2, 021004.
  24. [24]  T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Trans. of the Royal Society of London, Vol.95, pp. 65-87, 1805.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Aug. 19, 2019