single-au.php

IJAT Vol.9 No.6 pp. 619-628
doi: 10.20965/ijat.2015.p0619
(2015)

Paper:

Error Measurement and Calibration in Developing Virtual-Reality-Assisted Microassembly System

Ren-Jung Chang and Jia-Cheng Jau

Mechanical Engineering Department, National Cheng Kung University
No. 1 University Rd., Tainan 70101, Taiwan

Received:
March 3, 2015
Accepted:
September 16, 2015
Published:
November 5, 2015
Keywords:
microassembly, vision-based, virtual reality, calibration
Abstract
The operational error of a virtual reality (VR) assisted vision-based microassembly system is measured and calibrated during the system development stage. The vision-based microassembly system was designed and its opto-mechanical model was established in a virtual environment. By measuring the errors between the representative points in the images of virtual cameras and charge-coupled device (CCD) visual systems, the errors in the virtual environment were compensated by correcting the projection matrix parameters, the view matrix parameters, the initial components position, and the deviation angle for the working stage motion. The effectiveness of the proposed VR-assisted fine calibration method was tested by performing VR calibration on the virtual system.
Cite this article as:
R. Chang and J. Jau, “Error Measurement and Calibration in Developing Virtual-Reality-Assisted Microassembly System,” Int. J. Automation Technol., Vol.9 No.6, pp. 619-628, 2015.
Data files:
References
  1. [1] H. V. Brussel, J. Peirs, D. Reynaerts, A. Delchambre, G. Reinhart, N. Roth, M. Weck, and E. Zussman, “Assembly of microsystems,” Ann. CIRP, Vol.49, pp. 451-472, 2000.
  2. [2] A. J. Sanchez-Salmeron, R. Lopez-Tarazon, R. Guzman-Diana, and C. Ricolfe-Viala, “Recent development in micro-handling systems for micro-manufacturing,” J. Mater. Proc. Tech., Vol.167, No.2, pp. 499-507, 2005.
  3. [3] J. Cecil, D. Powell, and D. Vasquez, “Assembly and manipulation of micro devices – A state of the art survey,” Rob. Compu. Integ. Manuf., Vol.23, No.5, pp. 580-588, 2007.
  4. [4] G. C. Burdea, “Invited review: The synergy between virtual reality and robotics,” IEEE Trans. Rob. Autom., Vol.15, No.3, pp. 400-410, 1999.
  5. [5] B. S. Blanchard, “System Engineering Management,” John Wiley & Sons, 1991.
  6. [6] S. Fatikow, J. Seyfried, A. Buerkle, and F. Schmoeckel, “A flexible microrobot-based microassembly station,” J. Intell. Rob. Syst., Vol.27, pp. 135-169, 2000.
  7. [7] A. Ferreira, C. Cassier, and S. Hirai, “Automatic microassembly system assisted by vision servoing and virtual reality,” IEEE/ASME Trans. Mechatron., Vol.9, No.2, pp. 321-333, 2004.
  8. [8] K. B. Yesin and B. J. Nelson, “A CAD model based tracking system for visually guided microassembly,” Robotica, Vol.23, pp. 409-418, 2005.
  9. [9] G. Yang, J. A. Gaines, and B. J. Nelson, “Optomechatronic design of microassembly systems for manufacturing hybrid microsystems,” IEEE Trans. Ind. Electron., Vol.52, No.4, pp. 1013-1023, 2005.
  10. [10] L. Ren, L. Wang, J. K. Mills, and D. Sun, “Vision-based 2-D automatic micrograsping using coarse-to-fine grasping strategy,” IEEE Trans. Ind. Electron., Vol.55, No.9, pp. 3324-3331, 2008.
  11. [11] J. Wang, A. Liu, X. Tao, and H. Cho, “Microassembly of micropeg and hole using uncalibrated visual servoing method,” Precis. Eng., Vol.32, pp. 173-181, 2008.
  12. [12] M. Probst, M. Flüuckiger, S. Panée, O. Ergeneman, Z. Nagy, and B. J. Nelson, “Manufacturing of a hybrid acoustic transmitter using an advanced microassembly system,” IEEE Trans. Ind. Electron., Vol.56, No.7, pp. 2657-2666, 2009.
  13. [13] S. Bargiel, K. Rabenorosoa, C. Clevy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng., Vol.20, 045012, 2010.
  14. [14] V. Sariola and Q. Zhou, “Hybrid microassembly combining robotics and water droplet self-alignment,” IEEE Trans. Rob., Vol.26, No.6, pp. 965-977, 2010.
  15. [15] B. Tamadazte, E. Marchand, S. Dembéelée, and N. Le Fort-Piat, “CAD model-based tracking and 3D visual-based control for MEMS microassembly,” Int. J. Rob. Res., Vol.29, No.11, pp. 1416-1434, 2010.
  16. [16] R. J. Chang and C. C. Chen, “Using microgripper in development of automatic adhesive glue transferring and binding microassembly system,” Engineering, Vol.2, pp. 1-11, 2010.
  17. [17] R. J. Chang, C. Y. Lin, and P. S. Lin, “Visual-based automation of peg-in-hole microassembly process,” ASME, J. Manuf. Sci. Eng., 133.4, 2011.
  18. [18] B. Tamadazte, N. L. Piat, and S. Dembélé, “Robotic micromanipulation and microassembly using monoview and multiscale visual servoing,” IEEE/ASME Trans. Mechatron., Vol.16, No.2, pp. 277-287, 2011.
  19. [19] A. Sulzmann, J. Breguet, and J. Jacot, “Microvision system (MVS): A 3D computer graphic-based microrobot telemanipulation and position feedback by vision,” Photon. East’95, 1995.
  20. [20] J. Alex, B. Vikramaditya, and B. J. Nelson, “A virtual reality teleoperator interface for assembly of hybrid MEMS prototypes,” Proc. DETC, pp. 13-16, 1998.
  21. [21] A. Ferreira, C. Cassier, and S. Hirai, “Automatic microassembly system assisted by vision servoing and virtual reality,” IEEE/ASME Trans. Mechatron., Vol.9, No.2, pp. 321-333, 2004.
  22. [22] M. Probst, C. Hüurzeler, R. Borer, and B. J. Nelson, “Virtual reality for microassembly,” Int. Symp. Optomechatron. Tech., Vol.6718, 67180D, 2007.
  23. [23] N. Gobinath, J. Cecil, and D. Powell, “Micro devices assembly using virtual environments,” J. Intell. Manuf., Vol.18, No.3, pp. 361-369, 2007.
  24. [24] J. Cecil and J. Jones, “VREM: An advanced virtual environment for micro assembly,” Int. J. Advan. Manuf. Tech., pp. 1-10, 2014.
  25. [25] M. Ammi, V. Fremont, and A. Ferreira, “Automatic camera-based microscope calibration for a telemicromanipulation system using a virtue pattern,” IEEE Trans. Rob., Vol.25, No.1, pp. 184-191, 2009.
  26. [26] R. S. Wright, N. Haemel, and G. Sellers, “OpenGL SuperBible: Comprehensive Tutorial and Reference,” Pearson Education, 2010.
  27. [27] W. S. Kim, “Computer vision assisted virtual reality calibration,” IEEE Trans. Rob. Autom., Vol.15, No.3, pp. 450-464, 1999.
  28. [28] R. J. Chang and J. C. Jau, “Error measurement and compensation in developing virtual-reality-assisted vision-based microassembly machine,” Int. Conf. Mechatron. Tech., Taiwan, 2014.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 01, 2024