Paper:

# Development and Control of a Low-Cost, Three-Thruster, Remotely Operated Underwater Vehicle

## Khoa Duy Le, Hung Duc Nguyen, and Dev Ranmuthugala

University of Tasmania / Australian Maritime College, Maritime Way, Newnham, Tasmania 7248, Australia

*Int. J. Automation Technol.*, Vol.9 No.1, pp. 67-75, 2015.

- [1] X. Zhang, L. Li, and J. Yang, “Study on Underwater Dual-Laser Structured-Light System for ROV guiding,” Int. J. of Automation Technology, Vol.8, No.4, pp. 584-591, 2014.
- [2] H.D. Nguyen, S. Malalagama, and D. Ranmuthugala, “Modelling and Simulation of a Remotely Operated Vehicle,” Proc. of the 6
^{th}Vietnam Conf. on Mechatronics (VCM2012), pp. 312-328, 2012. - [3] H.D. Nguyen, S. Malalagama, and D. Ranmuthugala, “Design, Modelling and Simulation of a Remotely Operated Vehicle-Part 1,” J. of Computer Science and Cybernetics, Vol.29, No.4, pp. 299-312, 2013.
- [4] K. D. Le, H.D. Nguyen, and D. Ranmuthugala, “Design, Modelling and Simulation of a Remotely Operated Vehicle-Part 2,” J. of Computer Science and Cybernetics, Vol.30, No.2, pp. 106-116, 2014.
- [5] J. Busquets, J. V. Busquets, D. Tudela, F. Perez, J. Busquets-Carbonell, A. Barbera, C. Rodriguez, A. J. Garcia, and J. Gilabert, “Low-cost AUV based on Arduino open source microcontroller board for oceanographic research applications in a collaborative long term deployment missions and suitable for combining with an USV as autonomous automatic recharging platform,” Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES, 24-27 Sep. 2012.
- [6] K. R. Goheen and E. R. Jefferys, “Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles,” Oceanic Engineering, IEEE J. of, Vol.15, pp. 144-151, 1990.
- [7] N. Q. Hoang and E. Kreuzer, “Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: Theory and experiments,” Control Engineering Practice, Vol.15, pp. 411-419, 2007.
- [8] T. Ken, E. An, and P. P. J. Beaujean, “A Robust Fuzzy Autonomous Underwater Vehicle (AUV) Docking Approach for Unknown Current Disturbances,” Oceanic Engineering, IEEE J. of, Vol.37, pp. 143-155, 2011.
- [9] J. Kim and W. K. Chung, “Accurate and practical thruster modeling for underwater vehicles,” Ocean Engineering, Vol.33, pp. 566-586, 2006.
- [10] D. A. Smallwood and L. L. Whitcomb, “Model-based dynamic positioning of underwater robotic vehicles: theory and experiment,” Oceanic Engineering, IEEE J. of, Vol.29, pp. 169-186, 2004.
- [11] M. L. Corradini and G. Orlando, “A discrete adaptive variablestructure controller for MIMO systems, and its application to an underwater ROV,” Control Systems Technology, IEEE Trans. on, 5, pp. 349-359, 1997.
- [12] D. R. Yoerger, J. Newman, and J.J.E. Slotine, “Supervisory control system for the JASON ROV,” Oceanic Engineering, IEEE J. of, 11, pp. 392-400, 1986.
- [13] J. C. Kinsey, Y. Qingjun, and J. C. Howland, “Nonlinear Dynamic Model-Based State Estimators for Underwater Navigation of Remotely Operated Vehicles,” Control Systems Technology, IEEE Trans. on, 22, pp. 1845-1854, 2014.
- [14] D. Fredrik and J. S. Asgeir, “Sea Floor Geometry Approximation and Altitude Control of ROVs,” Control Engineering Practice, Vol.29, pp. 135-145, 2014.
- [15] F. A. Azis, M.S.M. Aras, M.Z.A. Rashid, M.N. Othman, and S.S. Abdullah, “Problem Identification for Underwater Remotely Operated Vehicle (ROV): A Case Study,” Procedia Engineering, Vol.41, pp. 554-560, 2012.
- [16] T. I. Fossen, “Handbook of Marine Craft Hydrodynamics and Motion Control,” John Wiley & Son, United Kingdom 2011.
- [17] G. N. Roberts and R. Sutton, “Advances in Unmanned Marine Vehicle,” Institution of Engineering and Technology, London, United Kingdom, 2006.
- [18] K. D. Le, H.D. Nguyen, and D. Ranmuthugala, “Development and Modelling of a Three-Thurster Remotely Operated Vehicle Using Open Source Hardware,” Int. Conf. on Mechatronic, 2013, Korea.
- [19] K.D. Le, H.D. Nguyen, and D. Ranmuthugala, “A Self-tuning Nonlinear PID Controller for a Three-Thruster Remotely Operated Underwater Vehicle,” Vietnam Conf. on Control and Automation, 2013, Vietnam.
- [20] W. M. Bessa, M. S. Dutra, and E. Kreuzer, “Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller,” Robotics and Autonomous Systems, Vol.56, pp. 670-677, 2008.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.