single-au.php

IJAT Vol.8 No.6 pp. 896-902
doi: 10.20965/ijat.2014.p0896
(2014)

Paper:

Modeling of Process Mechanisms in Pulsed Laser Micro Machining on Lithium Niobate Substrates

Teppei Onuki, Ippei Murayama, Hirotaka Ojima,
Jun Shimizu, and Libo Zhou

Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

Received:
April 15, 2014
Accepted:
August 2, 2014
Published:
November 5, 2014
Keywords:
laser ablation, lithium niobate, nonthermal process, pico second laser
Abstract

The mechanism behind the laser ablation of LN is investigated using near infrared pico-second-pulsed laser. A model of the mechanism is developed, deriving the mechanical, thermal, and photonic properties of LN in addition to doing preliminary experiments on laser ablation with controlled laser fluence. β is material removal using the nonthermal process via multiphoton ionization, γ is nonthermal material removal with chipping or cracking produced by generated heat (but at temperatures below the melting point), and δ is material removal using the thermal process with temperatures above the melting point, resulting in resolidification at the surface and the adhesion of oncemolten burrs around the processed area. In a process modes map constructed through exhaustive experiments on laser ablation under various irradiation conditions (at specific energy ρ and with number of pulse shots N’), different contributions of ρ and N’ in the machining process are found. In terms of machining quality, desirable conditions in the control of laser irradiations are the use of weaker ρ and increased N’ to keep thermal damage to a minimum and to raise the removal rate.

Cite this article as:
T. Onuki, I. Murayama, H. Ojima, <. Shimizu, and L. Zhou, “Modeling of Process Mechanisms in Pulsed Laser Micro Machining on Lithium Niobate Substrates,” Int. J. Automation Technol., Vol.8, No.6, pp. 896-902, 2014.
Data files:
References
  1. [1] T. Sano, T. Onuki, Y. Hamate, M. Hojo, S. Nagasawa, and H. Kuwano, “Micro blender and separator using inner-vortex of droplet induced by surface acoustic wave,” IEEE Proc. of Transducers2009, pp. 370-373, 2009.
  2. [2] M. Miyashita, T. Onuki, S. Nagasawa, and H. Kuwano, “A surface acoustic wave dynamics control device by grating structure,” IEEE Proc. of MEMS2008, pp. 661-664, 2008.
  3. [3] J. Meijer D. Deshpande, E. Stach, K. Rajukar, and D. Alexander, “Investigation of Femtosecond Laser-assistedMicromachining of Lithium Niobate,” CIRP Annals-Manufacturing Technology, Vol.51, Issue 2, pp. 531-550, 2002.
  4. [4] Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audourd, “Ultrafast laser ablation characteristics of PZT ceramic: Analysis methods and comparison with metals,” Optics and Lasers in Engineering, Vol.50, pp. 1582-1591, 2012.
  5. [5] T. Nakamoto, N. Shirakawa, K. Kishida, K. Tanaka, and H. Inui, “Synthesis of Porous Titanium with Directional Pores by Selective Laser Melting,” Int. J. of Automation Technology, Vol.6, No.5, pp. 597-603, 2012.
  6. [6] G. Zhou and M. Gu, “Direct optical fabrication of threedimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett., Vol.31, 2783, 2006.
  7. [7] A. Malshe, D. Deshpande, E. Stach, K. Rajukar, and D. Alexander, “Investigation of Femtosecond Laser-assisted Micromachining of Lithium Niobate,” CIRP Annals-Manufacturing Technology, Vol.53, Issue 1, pp. 187-190, 2004.
  8. [8] J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Applied Surface Science, Vol.253, pp. 7899-7902, 2007.
  9. [9] J. A. Chaos, R. W. Dreyfus, A. Perea, R. Serna, J. Gonzalo, and C. N. Afonso, “Delayed release of Li atoms from laser ablated lithium niobate,” Appl. Phys. Lett., Vol.76, 649, 2000.
  10. [10] R. A. Ganeev, L. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Optics Communications, Vol.229, pp. 403-412, 2004.
  11. [11] W-C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett., Vol.85, pp. 2316-2318, 2004.
  12. [12] O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E, Vol.71, 056603-(1-8), 2005.
  13. [13] Y. Nakagawa, K. Yamanouchi, and K. Shibayama, “Third-order elastic constants of lithium niobate,” J. Appl. Phys., 48, pp. 3969-3974, 1966.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 19, 2019