Paper:
Adaptive Integral-Type Neural Sliding Mode Control for Pneumatic Muscle Actuator
Dang Xuan Ba*, Kyoung Kwan Ahn*, and Nguyen Trong Tai**
*University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Republic of Korea
**Faculty of Electrical and Electronic Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Str, Dist. 10, Ho Chi Minh City, Viet Nam
- [1] D. Sasaki, T. Noritsugu, and M. Takaiwa, “Development and application of high contractile pneumatic artificial muscle,” Int. J. of Automation Technology, Vol.4, No.4, pp. 531-537, 2011.
- [2] X. Li, T. Noritsugu, M. Takaiwa, and D. Sasaki, “Design of wearable power assist wear for low back support using pneumatic actuators,” Int. J. of Automation Technology, Vol.7, No.2, pp. 228-236, 2013.
- [3] Y. K. Lee and I. Shimoyama, “A skeletal framework artificial hand actuated by pneumatic artificial muscle,” Proc. of the 1999 IEEE Int. Conf. on Robotics and Automation, pp. 926-931, May 1999.
- [4] B. Tondu, S. Ippolito, J. Guiochet, and A. Daidie, “A seven-degreesof-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots,” The Int. J. of Robotics Research, Vol.24, No.4, pp. 257-274, Apr. 2005.
- [5] X. Zhu, G. Tao, B. Yao, and J. Cao, “Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles,” Automica, Vol.44, No.9, pp. 2248-2257, 2008.
- [6] K. Kawashima, T. Sasaki, A. Ohkubo, T. Miyata, and T. Kagawa, “Application of robot arm using fiber knitted type pneumatic artificial rubber muscles,” Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 4937-4942, Apr. 2004.
- [7] S. Ganguly, A. Garg, A. Pasricha, and S. K. Dwivedy, “Control of pneumatic artificial muscle system through experimental modelling,” Mechatronics, Vol.22, No.8, pp. 1135-1147, 2012.
- [8] T. Hesselroth, K. Sarkar, P. Patrick van der Smagt, and K. Schulten, “Neural network control of a pneumatic robot arm,” IEEE Trans. on Systems, Man, and Cybernetics, Vol.24, No.1, pp. 28-38, Jan. 1994.
- [9] S. W. Chan and J. H. Lilly, “Fuzzy PD+I Learning Control for a Pneumatic Muscle,” The 12th IEEE Int. Conf. on Fuzzy Systems, Vol.1, pp. 278-283, May 2003.
- [10] T. D. C. Thanh and K. K. Ahn, “Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network,” Mechatronics, Vol.16, No.9, pp. 577-587, 2006.
- [11] H. P. H. Anh and K. K. Ahn, “Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse NARX fuzzy model,” Engineering Applications of Artificial Intelligence, Vol.24, No.4, pp. 697-716, 2011.
- [12] K. Xing, Y. Wang, Q.Zhu, and H. Zhou, “Modeling and control of McKibben artificial muscle enhanced with echo state networks,” Control Engineering Practice, Vol.20, No.5, pp. 477-488, 2012.
- [13] D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Control of Pneumatic Muscle Actuators,” IEEE Control Systems, Vol.15, No.1, pp. 40-48, 1995.
- [14] J. H. Lilly, “Adaptive tracking for pneumatic muscle actuators in Bicep and Tricep configurations,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, Vol.11, No.3, Sep. 2003.
- [15] X. Zhu, G. Tao, B. Yao, and J. Cao, “Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles,” IEEE Trans. on Control Systems Technology, Vol.17, No.3, May 2009.
- [16] B. Tondu, K. Braikia, M. Chettouh, and S. Ippolito, “Second order sliding mode control for an anthropomorphic robot-arm driven with pneumatic artificial muscles,” 9th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 47-54, Dec. 2009.
- [17] X. Shen, “Nonlinear model-based control of pneumatic artificial muscle servo systems,” Control Engineering Practice, Vol.18, No.3, pp. 311-317, 2010.
- [18] Y. Shtessel, M. Taleb, and F. Plestan, “A novel adaptive-gain supertwisting sliding mode controller: Methodology and application,” Automica, Vol.48, No.5, pp. 759-769, 2012.
- [19] M. Taleb, A. Levant, and F. Plestan, “Pneumatic actuator control: Solution based on adaptive twisting and experimentation,” Control Engineering Practice, Vol.21, No.5, pp. 727-736, 2013.
- [20] T. V. Minh, T. Tjahjowidodo, H. Ramon, and H. V. Brussel, “Control of a pneumatic artificial muscle (PAM) with model-based hysteresis compensation,” IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 1082-1087, Jul. 2009.
- [21] T. J. Yeh, M. J. Wu, T. J. Lu, F. K. Wu, and C. R. Huang, “Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis,” Mechatronics, Vol.20, No.6, pp. 686-697, 2010.
- [22] T. V. Minh, B. Kamers, H. Ramon, and H. V. Brussel, “Modeling and control of a pneumatic artificial muscle manipulator joint - Part I: Modeling of a pneumatic artificial muscle manipulator joint with accounting for creep effect,” Mechatronics, Vol.22, No.7, pp. 923-933, 2012.
- [23] M. K. Chang, J. J. Liou, and M. L. Chen, “T-S fuzzy modelbased tracking control of a one-dimensional manipulator actuated by pneumatic artificial muscles,” Control Engineering Practice, Vol.19, No.12, pp. 1442-1449, 2011.
- [24] C. P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles,” IEEE Trans. on Robotics and Automation, Vol.12, No.1, pp. 90-102, Feb. 1996.
- [25] B. Tondu and P. Lopez, “Modeling and control of McKibben artificial muscle robot actuators,” IEEE Control Systems Magazine, Vol.20, No.2, pp. 15-38, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.