Paper:
Feature-Based 3D Process Planning for MEMS Fabrication
Satoshi Kanai*, Takayuki Shibata**, and Takahiro Kawashima**
*Graduate School of Information Science and Technology, Hokkaido University, Kita-14, Nishi-9, Kita-ku, Sapporo 060-0814, Japan
**Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
- [1] M. Gad-el-Hak, “Introduction (Chapter 1),” The MEMS Handbook. – MEMS Design and Fabrication (edited by M.Gad-el-Hak), Taylor & Fransis Group, pp. 1-1-1-5, 2006.
- [2] K. Ashida, S. Nakano, J. Park, and J. Akedo, “On-Demand MEMS Device Production System by Module-based Microfactory,” Int. J. of Automation Technology, Vol.4, No.2, pp. 110-116, 2010.
- [3] Micromachine Center, FY 2009 Reports on Research Studies, MicroNano, No.71, p. 8, 2009,
http://www.mmc.or.jp/e/e-main.html [accessed Dec. 1, 2013] - [4] P. M. Osternberg and S. D. Senturia, “MemsBuilder: An automated 3D solid model construction program for micro-electromechanical structures,” Proc. of 8th Int. Conf. on Solid-state Sensors and Actuators and EuroSensors IX, pp. 21-24, 1995.
- [5] H. Dixist, S. Kannapan, and D. L. Taylor, “3D geometric simulation of MEMS fabrication processes: A semantic approach,” Proc. of 4th ACM symp. on Solid Modeling and Application, pp. 376-386, 1997.
- [6] CoventorWare, http://www.coventor.com/products/coventorware/ [accessed Dec. 1, 2013]
- [7] H. Kotera, “Computer aided engineering systems forMicro Electro-Mechanical Systems -MEMS-One,” Proc. of Sens Symp Sens Micromachines Appl Sys, Vol.23, pp. 5-8, 2006.
- [8] S. A. Jawalkar and M. I. Campbell, “Automated synthesis ofMEMS fabrication sequences using graph grammars,” Proc. of ASME 2007 Int. Design Engineering Technical Conf., DETC2007-34691, 2007.
- [9] S. Cho, K. Lee, and T.W. Kim, “Development of a geometry-based process planning system for surface micromachining,” Int. J. of Production Research, Vol.40, No.5, pp. 1275-1293, 2002.
- [10] J. Li, S. Gao, and Y. Liu, “Solid-based CAPP for surface micromachined MEMS devices,” Computer-Aided Design, Vol.39, No.3, pp. 190-201, 2007.
- [11] T. Kitahara, S. Kanai, T. Shibara, and T. Kawashima, “Process planning system for MEMS device using a 3D geometric model,” Proc. of the 3rd Asian Scociety for Precision Engineering and Nanotechnology, 2E-11-1947, 2009.
- [12] J. Li, Y. Liu, H. Ling, W. Guo, and G. He, “Systematic Direct Solid Modeling Approach for Surface Micormachined MEMS,” Advanced Materials Research, Vols.433-440, pp. 3130-3137, 2012.
- [13] Z. Liu and H. Chen, “An Optimal Design Method based on Feature Technology for Micro Device,” Advanced Materials Research, Vols.383-390, pp. 440-446, 2012.
- [14] Z. Liu and H. Chen, “Voxel Primitive Based Modeling and Simulating Method for Surface Micromachining Technology,” J. of Software, Vol.8, No.11, pp. 2881-2889, 2013.
- [15] C.W. Hunter, J. C. Xu, C. C. Liu, and D. B. Makel, “Electrochemical Cell Oxygen Detection (Section 11.4.3),” TheMEMS Handbook – MEMS Design and Fabrication, M.Gad-el-Hak (Ed.), Taylor & Fransis Group, pp. 11-13-11-15, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.