Paper:
Quadrilateral Meshing for Hexahedral Mesh Generation Based on Facet Normal Matching
Hiroshi Kawaharada, Yusuke Imai, and Hiroyuki Hiraoka
Department of Precision Mechanics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- [1] A. Yamanaka and T. Takaki, “Simulation of Microstructure Evolution and Deformation Behavior for Dual-Phase Steel by Multi-Phase-Field Method and Elastoplastic Finite Element Method,” Int. J. of Automation Technology, Vol.7, No.1, pp. 16-23, 2013.
- [2] H. Date, S. Kanai, T. Kishinami, and I. Nishigaki, “Mesh Simplification and Adaptive LOD for Finite Element mesh Generation,” Int. J. of CAD/CAM, Vol.6, No.1, Paper No.8, 2006.
- [3] H. Date, S. Noguchi, M. Onosato, and S. Kanai, “Flexible Control of Multimaterial Tetrahedra Mesh Properties by Using Multiresolution Techniques,” IEEE Trans. on Magnetics, Vol.45, Issue 3, pp. 1352-1355, 2009.
- [4] H. Kawaharada and H. Hiraoka, “Boundary Stencils of Volume Subdivision for Simulations,” Proc. of the ACDDE2011, 3-8.
- [5] H. Kawaharada and K. Sugihara, “Hexahedral Mesh Generation Using Subdivision,” Computational Engineering, Vol.16, No.2, pp. 12-15, 2011.
- [6] R. Schneiders, R. Schindler, and F. Weiler, “Octree-based Generation of Hexahedral Element Meshes,” The 5th Int. Meshing Roundtable, 205-215, 1996.
- [7] M. Loic, “A New Approach to Octree-based Hexahedral Meshing,” The 10th Int. Meshing Roundtable, 209-221, 2001.
- [8] M. L. Saten, S. J. Owen, and T. D. Blacker, “Unconstrained Paving and Plastering: A New Idea for All Hexahedral Mesh Generation,” The 14th Int. Meshing Roundtable, 399-416, 2005.
- [9] Y. Wada, S. Yoshimura, and G. Yagawa, “Intelligent Local Approach for Automatic Hexahedral Mesh Generation,” The 2nd Symp. on Trends in Unstructured Mesh Generation, 1999.
- [10] T. D. Blacker and R. J. Meyers, “Seams and Wedges in Plastering: A 3D Hexahedral Mesh Generation Algorithm,” Engineering with Computers, Vol.2, Issue 9, pp. 83-93, 1993.
- [11] T. J. Tautges, T. Blacker, and S. A. Mitchell, “The Whisker Weaving Algorithm: A Connectivity-based Method for Constructing Allhexahedral Finite Element Meshes,” Int. J. for Numerical Methods in Engineering, Vol.39, pp. 3327-3349,1996.
- [12] M. Muller-Hannemann, “Hexahedral Mesh Generation by Successive Dual Cycle Elimination,” The 7th Int. Meshing Roundtable, 365-378, 1998.
- [13] A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier, “Hexahedral Mesh Generation Using The Embedded Voronoi Graph,” The 7th Int. Meshing Roundtable, 347-364, 1998.
- [14] S. Jason, S. A. Mitchell, P. Knupp, and D. White, “Methods for Multisweep Automation,” The 9th Int. Meshing Roundtable, 77-87, 2000.
- [15] R. Xevi and J. Sarrate, “An Automatic and General Least-squares Projection Procedure for Sweep Meshing,” The 15th Int. Meshing Roundtable, 487-506, 2006.
- [16] M. Nieser, U. Reitebuch, and K. Polthier, “CubeCover-Parameterization of 3D Volumes,” Computer Graphics Forum, Vol.30, Issue 5, pp. 1397-1406, 2011.
- [17] S. Moriya, H. Hiraoka, and H. Kawaharada, “Replication of Sharp Features Hexahedral Meshes Using Modified Laplacian Energy Minimization,” In the Proc. of ACDDE2012.
- [18] Y. Imai, S. Moriya, H. Hiraoka, and H. Kawaharada, “Quadrilateral Mesh Fitting that Preserves Sharp features based on Multi-normals for Laplacian Energy,” In the Proc. of ACDDE2013.
- [19] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo, “All-hex meshing using singularity-restricted field,” ACM Trans. on Graphics, Vol.31, Issue 6, Article No.177, 2012.
- [20] Aim@Shape Project, cited Jul. 11, 2012,
Available from: http://shapes.aimatshape.net/ - [21] Polymender, cited Jul.11, 2012,
Available from: http://www.cs.wustl.edu/˜taoju/code/polymender.htm [Accessed Jul. 11, 2012] - [22] R. Mehra, Q. Zhou, J. Long, A. Sheffer, A. Gooch, and N. J. Mitra, “Abstraction of Man-Made Shapes,” ACM Trans. on Graphics, Vol.28, Issue 5, pp. 1-10, 2009.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.