Paper:
Study on Control Performance with Consideration of Articulated Manipulators with Pneumatic Cylinders
Eiji Murayama*, Yoshiyuki Yogosawa*, Yukio Kawakami**,
Akiyoshi Horikawa***, Koji Shioda***, and Masashi Ogawa***
*Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-city, Saitama 337-8570, Japan
**Department of Machinery and Control Systems, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-city, Saitama 337-8570, Japan
***Development Department, Development Division, KOGANEI Corporation
- [1] K. Kuribaynshi, “Criteria for the Evaluation of New Actuators as Energy Converters,” Advanced Robotics, Vol.7, No.4, pp. 289-307, 1993.
- [2] Q.-H. Yang, Y. Kawakami, and S. Kawai, “Position Control of a Pneumatic Cylinder with Friction Compensation,” J. of the Japan Hydraulics & Pneumatics Society, Vol.28, No.2, pp. 245-251, 1997.
- [3] T. Noritsugu, T. Wada, and J. Tomono, “Design of Optimal Pneumatic Servosystem Considering Control Valve Delay Time,” Trans. of the Society of Instrument and Control Engineers, Vol.24, No.5, pp. 490-497, 1988.
- [4] T. Kosaki and M. Sano, “An observer-based friction compensation technique for positioning control of a pneumatic servo system,” J. of System Design and Dynamics, Vol.3, No.1, pp. 37-46, 2009.
- [5] T. Noritsugu and T. Wada, “Control performance and typical features of pneumatic servo system,” Hydraulics & Pneumatics, Vol.21, No.4, pp. 417-424, 1990.
- [6] T. Asakura and L. Yunsheng, “A Stabilization Control of 2-Link Pneumatic Manipulator byMeans of Neural Network,” Trans. of the Japan Society of Mechanical Engineers, Series C, Vol.70, No.692, pp. 1093-1099, 2004.
- [7] N. Tukamoto, Y. Kawakami, and K. Nakano, “An Application of Gain-scheduling Control to a Pneumatic Servo System,” Trans. of the Japan Fluid Power System Society, Vol.33, No.1, pp. 15-20, 2002.
- [8] Y. Kawakami, et al., “Development of Articulated Manipulators with Pneumatic Cylinders,” Int. J. of Automation Technology, Vol.5, No.4, 2011.
- [9] E.Murayama, et al., “Development of new articulated manipulators with compact pneumatic cylinders,” Mechatronics and Automation (ICMA), 2012 Int. Conf., pp. 766-771, 2012.
- [10] R. S. Jamisola, Jr. and E. P. Dadios, “Experimental Identification of Manipulator Dynamics Through the Minimization of its Natural Oscillations,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.14, No.1, pp. 39-45, 2010.
- [11] S. Toritani, et al., “Numerical Solution Using Nonlinear Least-Squares Method for Inverse Kinematics Calculation of Redundant Manipulators,” J. of Robotics and Mechatronics, Vol.24, No.2, pp. 363-371, 2012.
- [12] Y. Ono and T. Morita, “An Underactuated Manipulation Method Using a Mechanical Gravity Canceller,” J. of Robotics and Mechatronics, Vol.16, No.6, pp. 563-569, 2004.
- [13] A.M.S.F. Galhano and J. A. Dnreiro Machado, “Kinematic Robustness of Manipulating Systems,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.6, No.2, pp. 93-98, 2002.
- [14] S. Shindo, S. Tomita, and Y. Aiyama, “Realization of Pressfitting by Impact Manipulation Using an Under-Actuated Manipulator,” Int. J. of Automation Technology, Vol.2, No.4, pp. 305-311, 2008.
- [15] K. Kaneko, K. Komoriya, and K. Tanie, “Manipulator Control Based on a Nominal Dynamic Model in Operational Space,” Trans. of the Japan Society of Mechanical Engineers, C, Vol.60, No.572, pp. 1351-1357, 1994.
- [16] K. Johanastrom and Canudas-de-Wit, “Revisiting the LuGre friction model,” Control Systems, IEEE, Vol.28, No.6, pp. 101-114, 2008.
- [17] L. Marton and B. Lantos, “Modeling, Identification, and Compensation of Stick-Slip Friction,” Industrial Electronics, IEEE Trans., Vol.54, No.1, pp. 511-521, 2007.
- [18] L. Cai, et al., “A smooth robust nonlinear controller for robot manipulators with joint stick-slip friction,” Robotics and Automation, IEEE Int. Conf., Vol.3, pp. 449-454, 1993.
- [19] G. Song, et al., “Integrated adaptive-robust control of robot manipulators with joint stick-slip friction,” Control Applications, IEEE Int. Conf., pp. 177-182, 1997.
- [20] G. Song and L. Cai, “A smooth robust control approach to cooperation of multiple robot manipulators,” American Control Conference, Vol.2, pp. 1382-1386, 1995.
- [21] K. Kiguchi and T. Fukuda, “Robot Joint Friction Compensation using Soft Computing,” Trans. of the Japan Society of Mechanical Engineers Robotics · Mechatronics, Vol.1999, No.Pt.1, pp. 1P1.26.026(1)-1P1.26.026(2), 1999.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.