Paper:
Simulation of Microstructure Evolution and Deformation Behavior for Dual-Phase Steel by Multi-Phase-Field Method and Elastoplastic Finite Element Method
Akinori Yamanaka* and Tomohiro Takaki**
*Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
**Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaidoucho, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
- [1] M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,” Acta Materialia, Vol.59, pp. 658-670, 2011.
- [2] T. Senuma, M. Suehiro, and H. Yada, “Mathematical Models for Predicting Microstructural Evolution and Mechanical Properties of Hot Strips,” ISIJ Int., Vol.32, pp. 423-432, 1992.
- [3] M. Suehiro, T. Senuma, H. Yada, and K. Sato, “Application of Mathematical Model for Predicting Microstructural Evolution to High Carbon Steels,” ISIJ Int., Vol.32, pp. 433-439, 1992.
- [4] N. Provatas and K. Elder, “Phase-Field Methods in Materials Science and Engineering,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010.
- [5] I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G. J. Schmitz, and J. L. L. Renzende, “A phase field concept for multiphase systems,” Physica D, Vol.94, pp. 135-147, 1996.
- [6] D. Fan and L.-Q. Chen, “Computer simulation of grain growth using a continuum field model,” Acta Materialia, Vol.45, pp. 611-622, 1997.
- [7] R. Kobayashi, “Modeling and numerical simulations of dendritic crystal growth,” Physica D. Vol.63, pp. 410-423, 1993.
- [8] J. A. Warren and W. J. Boettinger, “Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phasefield method,” ActaMetallurgica etMaterialia, Vol.43, pp. 689-703, 1995.
- [9] Y. Wang and A. G. Khachaturyan, “Three-dimensional field model and computer modeling of martensitic transformations,” Acta Materialia, Vol.45, pp. 759-773, 1997.
- [10] I. Loginova, J. Odqvist, G. Amberg, and J. Ågren, “The phasefield approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys,” Acta Materialia, Vol.51, pp. 1327-1339, 2003.
- [11] T. Takaki, Y. Hisakuni, T. Hirouchi, A. Yamanaka, and Y. Tomita, “Multi-phase-field simulations for dynamic recrystallization,” Computational Materials Science, Vol.45, pp. 881-888, 2009.
- [12] T. Takaki, A. Yamanaka, Y. Higa, and Y. Tomita, “Phase-field Model during Static Recrystallization based on Crystal-plasticity Theory,” J. of Computer-aided Materials Design, Vol.14, pp. 75-84, 2007.
- [13] J. M. Guedes and N. Kikuchi, “Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods,” Computer Methods in Applied Mechanics and Engineering, Vol.83, pp. 143-198, 1990.
- [14] K. Terada and N. Kikuchi, “A class of general algorithms for multiscale analyses of heterogeneous media,” Computer Methods in Applied Mechanics and Engineering, Vol.190, pp. 5427-5464, 2001.
- [15] K. Terada, K. Matsui, M. Akiyama, and T. Kuboki, “Numerical reexamination of the micro-scale mechanism of the Bauschinger effect in carbon steels,” Computational Materials Sciences, Vol.31, pp. 67-83, 2004.
- [16] A. Yamanaka, T. Takaki, and Y. Tomita, “Coupled simulation of microstructural formation and deformation behavior of ferrite-pearlite steel by phase-field method and homogenization method,” Materials Science and Engineering. A, Vol.349, pp. 244-252, 2008.
- [17] I. Steinbach and F. Pezzolla, “A generalized field method for multiphase transformations using interface fields,” Physica D, Vol.134, pp. 385-393, 1999.
- [18] J. Eiken, B. Böttger, and I. Steinbach, “Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application,” Physical Review E, Vol.73, p. 066122, 2006.
- [19] J. Tiaden, B. Nestler, H. J. Diepers, and I. Steinbach, “The multiphase-field model with an integrated concept for modelling solute diffusion,” Physica D, Vol.115, pp. 73-86, 1998.
- [20] M. Militzer, M. G. Mecozzi, J. Sietsma, and S. van der Zwaag, “Three-dimensional phase field modelling of the austenite-to-ferrite transformation,” Acta Materialia, Vol.54, pp. 3961-3972, 2006.
- [21] A. Yamanaka, T. Takaki, and Y. Tomita, “Simulation of Austeniteto-ferrite Transformation in Deformed Austenite by Crystal Plasticity Finite ElementMethod and Multi-phase-field Method,” ISIJ Int., Vol.52, pp. 659-668, 2012.
- [22] Y. Tomita, “Numerical Elasto-Plastic Mechanics,” Yokendo Ltd, 1990. (in Japanese)
- [23] S. J. Hollister and B. A. Riemer, “Digital image based finite element analysis for bone microstructure using conjugate gradient and Gausian filter technique,” Mathematical Methods in Medical Imaging II, Vol.2035, pp. 95-106, 1993.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.