Paper:
Tool Path Generation for Five-Axis Controlled Machining with Consideration of Structural Interference
Tomoyuki Kanda and Koichi Morishige
Faculty of Informatics and Engineering, Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
- [1] Y.-S. Lee and T.-C. Chang, “2-Phase approach to global tool interference avoidance in 5-axis machining,” Computer-Aided Design, Vol.27, No.10, pp. 715-729, 1995.
- [2] T. Chen, P. Ye, and J. Wang, “Local interference detection and avoidance in five-axis NC machining of sculptured surfaces,” Springer-Verlag, London, Vol.25, Nos.3-4, pp. 343-349, 2005.
- [3] C.-F. You and C.-H. Chu, “Tool-Path Verification in Five-Axis Machining of Sculptured Surfaces,” Springer-Verlag, London, Vol.13, No.4, pp. 248-255, 1997.
- [4] C.-H. Chu and J.-T. Chen, “Tool Path Planning for Five-Axis Flank Milling with Developable Surface Approximation,” Springer-Verlag, London, Vol.29, Nos.7-8, pp. 707-713, 2006.
- [5] W. Zhang, Y. F. Zhang, Q. J. Ge, “Interference-free tool path generation for 5-axis sculptured surface machining using rational Bezier motions of a flat-end cutter,” Int. J. of Production Research, Vol.43, No.19, pp. 4103-4124, 2005.
- [6] C.-C. Lo, “Real-time generation and control of cutter path for 5-axis CNC machining,” Int. J. of Machine Tools and Manufacture, Vol.39, pp. 471-488, 1999.
- [7] Y.-L. Cai, G. X, “Global tool interference detection in five-axis machining of sculptured surface,” Proc. of the Institution of Mechanical Engineers, Part B, J. of Engineering Manufacture, Vol.216, p. 1345, 2002.
- [8] J. P. Kruth, B. Lauwers, P. Klewais, and P. Dejongh, “NCpostprocessing and NC-simulation for five-axis milling operations with automatic collision avoidance,” J. for Manufacturing Science and Production. Vol.2, Issue 4, pp. 207-216, 1999.
- [9] Y. Takeuchi, K.Wada, T. Hisaki, andM. Yokoyama, “Study on postprocessor for 5-axis control machining centers – in case of spindletilting type and table/spindle-tilting type,” Proc. of The Japan Society for Precision Engineering, Vol.60, No.1, p. 75, 1994.
- [10] Y. Fujino, K. Morishige, “Tool Path Generation for Five-Axis Controlled Machining with Consideration of Movable Range of Machine Tool and Tool Attitude Change,” Proc. of The Japan Society for Precision Engineering, Vol.74, No.12, p. 1330, 2008.
- [11] K. Morishige, K. Kase, and Y. Takeuchi, “Collision-Free Tool Path Generation Using 2-Dimensional C-Space for 5-Axis Control Machining,” The Int J. of Advanced Manufacturing Technology, Springer-Verlag, London, Vol.13, No.6, pp. 393-400, 1997.
- [12] D. E. Knuth, “The Art of Computer Programming,” Addison-Wesley, Reading, Massachusetts, Vol.3, Sorting and Searching, 1973.
- [13] D. T. Lee, C. K. Wong, “Worst-Case Analysis for Region and Partial region Searches in Multidimensional Binary Search Trees and Balanced Quad Trees,” Acta Infomatica, Vol.9, No.1, pp. 23-29, 1977.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.