Paper:
Reducing Weld Line by Heating Mold Surface with Heater Embedded by Laser Metal Sintering
Takeshi Yoneyama*, Satoshi Abe**, and Michiru Miyamaru***
*School of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
**Panasonic Corporation Eco Solutions company, 1048 Kadoma, Osaka 571-8686, Japan
***Miyamaru Precision Mold Co., 1-31 Higashi-kayatsume, Kanazawa 920-0209, Japan
- [1] S. Abe, Y. Higashi, I. Fuwa, N. Yoshida, and T. Yoneyama, “Milling-Combined Laser Metal Sintering System and Production of Injection Molds with Sophisticated Functions,” Proc. of the 11th Int. Conf. on Precision Engineering, pp. 285-290, 2006.
- [2] T. Yoneyama, H. Kagawa et al., “Effective Cooling and Accuracy Improvement in Injection Molding Using a Metal Mold with Cooling Channels Composed by Laser Sintering (3rd report),” J. of Precision Engineering, Vol.71, Issue 3, pp. 347-351, 2005. (in Japanese)
- [3] T. Yoneyama, H. Kagawa et al., “Accuracy Improvement in Injection Molding Using Milling-combined Laser Metal Sintered Mold,” J. of Precision Engineering, Vol.73, Issue 9, 2007. (in Japanese)
- [4] T. Yoneyama, H. Kagawa et al., “Reduction in Injection Cycle time Using a Milling Combined Laser Metal Sintered mold,” Seikeikakou, Vol.19, No.10, pp. 662-668, 2007. (in Japanese)
- [5] T. Yoneyama and H. Kagawa, “Fabrication of Cooling Channels in the Injection Molding by Laser Metal Sintering,” International J. of Automation Technology, Vol.2, No.3, pp. 162-167, 2008.
- [6] T. Yoneyama, K. Naito, S. Abe, and M. Miyamaru, “Reduction of Injection Pressure for Thin Walled Molding using the Laser Metal Sintered Mold,” J. of Precision Engineering, Vol.76, Issue 2, pp. 188-192, 2010. (in Japanese)
- [7] T. Yoneyama, S. Abe, and M. Miyamaru, “Reduction of Weld-line by the Laser Metal Sintered Mold and the Effect of Hot Air Preheating,” Journal of Precision Engineering, Vol.77, Issue 10, pp. 955-959, 2011. (in Japanese)
- [8] R. Yoshino and U. Takeno, Japanese patent No.4052600.
- [9] Y. Sato et al., Japanese patent No.3977565.
- [10] S. C. Chen, Y. Lin, R. Chien, and H. Li, “Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology,” Advances in Polymer Technology, Vol.27, Issue 4, pp. 224-232, 2008.
- [11] N. Renou and J. Feigenblum, “How Inductive Heating Can Improve Plastic Injection,” Seikei-kakou, Vol.23, No.12, pp. 705-710, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.