single-au.php

IJAT Vol.5 No.5 pp. 639-647
doi: 10.20965/ijat.2011.p0639
(2011)

Paper:

Motion Planning of Biped Robot Equipped with Stereo Camera Using Grid Map

Atsushi Yamashita*, Masaaki Kitaoka**, and Toru Kaneko*

*Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561, Japan

**Tecmo Koei Holdings Co., Ltd., 1-18-12 Minowa-cho, Kohoku-ku, Yokohama-shi, Kanagawa 223-8503, Japan

Received:
May 31, 2011
Accepted:
August 15, 2011
Published:
September 5, 2011
Keywords:
motion planning, biped robot, stereo camera, grid map, 3D measurement
Abstract

Recognizing its surroundings is important for biped robots seeking a destination. In this paper, we propose a motion planning method of a biped robot including path planning and obstacle avoidance. The robot obtains distance information on its surrounding environment from images captured by a stereo camera system, and generates a 3D map, then, builds a 2D grid map that locates flat floor regions, obstacle regions, bump regions, gate regions, and un-measured regions to decide its path by using the 2D grid map. Experimental results confirm the effectiveness of the proposed method.

References
  1. [1] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, “Design of Prototype Humanoid Robotics Platform for HRP,” Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2431-2436, 2002.
  2. [2] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita, “Cybernetic Human HRP-4C,” Proc. of the 9th IEEERAS Int. Conf. on Humanoid Robots, pp. 7-14, 2009.
  3. [3] K. Umeda, “A Compact Range Image Sensor Suitable for Robots,” Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 3167-3172, 2004.
  4. [4] N. Hikosaka, K. Watanabe, and K. Umeda, “Obstacle Detection of a Humanoid on a Plane Using a Relative Disparity Map Obtained by a Small Range Image Sensor,” Proc. of the 2007 IEEE Int. Conf. on Robotics and Automation, pp. 3048-3053, 2007.
  5. [5] T. Kuroki, K. Terabayashi, and K. Umeda, “Construction of a Compact Range Image Sensor Using Multi-Slit Laser Projector and Obstacle Detection of a Humanoid with the Sensor,” Proc. of the 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5972-5977, 2010.
  6. [6] K. Sabe, M. Fukuchi, J. Gutmann, T. Ohashi, K. Kawamoto, and T. Yoshigahara, “Obstacle Avoidance and Path Planning for Humanoid Robots Using Stereo Vision,” Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 1407-1413, 2004.
  7. [7] J. Gutmann, M. Fukuchi, and M. Fujita, “Stair Climbing for Humanoid Robots Using Stereo Vision,” Proc. of the 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 586-591, 2004.
  8. [8] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “A Floor and Obstacle Height Map for 3D Navigation of a Humanoid Robot,” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, pp. 1066-1071, 2005.
  9. [9] K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, and T. Yoshigahara, “Real-Time Path Planning for Humanoid Robots using Stereo Vision,” Proc. of the 9th Int. Joint Conf. on Artificial Intelligence, pp. 1232-1237, 2005.
  10. [10] M. Kitaoka, A. Yamashita, and T. Kaneko: “Obstacle Avoidance and Path Planning Using Color Information for a Biped Robot Equipped with a Stereo Camera System,” Proc. of the 4th Asia Int. Symp. on Mechatronics, pp. 38-43, 2010.
  11. [11] F. Kanehiro, H. Hirukawa, K. Kaneko, S. Kajita, K. Fujiwara, K. Harada, and K. Yokoi, “Locomotion Planning of Humanoid Robots to Pass through Narrow Spaces,” Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 604-609, 2004.
  12. [12] F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa, K. Fujiwara, K. Harada, K. Kaneko, H. Hirukawa, and F. Tomita, “Whole Body Locomotion Planning of Humanoid Robots Based on a 3D Grid Map,” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, pp. 1084-1090, 2005.
  13. [13] A. Yamashita, T. Arai, J. Ota, and H. Asama, “Motion Planning of Multiple Mobile Robots for Cooperative Manipulation and Transportation,” IEEE Trans. on Robotics and Automation, Vol.19, No.2, pp. 223-237, 2003.
  14. [14] A. Yamashita, K. Fujita, T. Kaneko, and H. Asama, “Path and Viewpoint Planning of Mobile Robots with Multiple Observation Strategies,” Proc. of the 2004 IEEE/RSJ Int. Conference on Int. Robots and Systems, pp. 3195-3200, 2004.
  15. [15] S. M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
  16. [16] T. Simon and S. Kagami, “Humanoid Robot Localisation Using Stereo Vision,” Proc. of the 5th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 19-25, 2005.
  17. [17] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Online Footstep Planning for Humanoid Robots,” Proc. of the 2003 IEEE Int. Conf. on Robotics and Automation, pp. 1-10, 2003.
  18. [18] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and T. Kanade, “Footstep Planning for the Honda ASIMO Humanoid,” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, pp. 629-634, 2005.
  19. [19] K. Harada, M. Morisawa, S. Nakaoka, K. Kaneko, and S. Kajita, “Kinodynamic Planning for Humanoid Robots Walking on Uneven Terrain,” J. of Robotics and Mechatronics, Vol.21 No.3, pp. 311-316, 2009.
  20. [20] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-Guided Humanoid Footstep Planning for Dynamic Environments,” Proc. of the 5th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 13-18, 2005.
  21. [21] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and T. Kanade, “Online Environment Reconstruction for Biped Navigation,” Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation, pp. 3089-3094, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jul. 26, 2017