IJAT Vol.5 No.5 pp. 634-638
doi: 10.20965/ijat.2011.p0634


Drop-on-Demand Printer for Micro Ion-Selective Electrode Fabrication

Mana Saedan

Department of Mechanical Engineering, Chiang Mai University, 239 Huaykaew Rd., Suthep, Muang, Chiang Mai 50200, Thailand

March 31, 2011
June 2, 2011
September 5, 2011
drop-on-demand, layer-by-layer, ionselective electrode, photopolymer, dispenser

Drop-On-Demand (DOD) printing technology has been applied across various fields. Flexibility and efficient use of printing material attract applications where object accretion layer-by-layer is essential. This paper presents the application of DOD in manufacturing a planer ion-selective electrode from all liquid materials. The custom development of key hardware lowers the cost of DOD machine. Also it enables direct control to each device. The printing materials are specifically formulated to meet functional demands of ISEs while not compromise dispensing capability.

Cite this article as:
M. Saedan, “Drop-on-Demand Printer for Micro Ion-Selective Electrode Fabrication,” Int. J. Automation Technol., Vol.5, No.5, pp. 634-638, 2011.
Data files:
  1. [1] A. Lewenstam, M. Maj-Zurawska, and A. Hulanicki, “Application of ion-selective electrodes in clinical analysis,” Electroanalysis, Vol.3, No.8, pp. 727-734, 2005.
  2. [2] R. De Marco, G. Clarke, and B. Pejcic, “Ion-Selective Electrode Potentiometry in Environmental Analysis,” Electroanalysis, Vol.19, No.19-20, pp. 1987-2001, 2007.
  3. [3] V. I. Adamchuk, E. D. Lund, B. Sethuramasamyraja, M. T. Morgan, A. Dobermann, and D. B.Marx, “Direct measurement of soil chemical properties on-the-go using ion-selective electrodes,” Computers and Electronics in Agriculture, Vol.48, No.3, pp. 272-294, 2005.
  4. [4] A. Uhlig, E. Lindner, C. Teutloff, U. Schnakenberg, and R. Hintsche, “Miniaturized Ion-Selective Chip Electrode for Sensor Application,” Analytical Chemistry, Vol.69, No.19, pp. 4032-4038, 1997.
  5. [5] L. Y. Heng, S. Alva, and M. Ahmad, “Ammonium ion sensor based on photocured and self-plasticising acrylic films for the analysis of sewage,” Sensors and Actuators B: Chemical, Vol.98, pp. 160-165, 2004.
  6. [6] L. H. Larsen, T. Kjaer, and N. P. Revsbech, “A Microscale NO3- Biosensor for Environmental Applications,” Analytical Chemistry, Vol.69, pp. 3527-3531, 1997.
  7. [7] R. Koncki, L. Tymecki, E. Zwierkowska, and S. Glab, “Screenprinted copper ion-selective electrode,” Fresenius J. Anal Chem, Vol.367, pp. 393-395, 2000.
  8. [8] C.-C. Chang, B. Saad, M. Surif, M. N. Ahmad, and A. Y. M. Shakaff, “Disposable e-tongue for the assessment of water quality in fish tanks,” Sensors, Vol.8, pp. 3665-3677, 2008.
  9. [9] J.-P. Veder, R. De Marco, G. Clarke, R. Chester, A. Nelson, K. Prince, E. Pretsch, and E Bakker, “Elimination of undesirable water layers in solid contact polymeric ion-selective electrodes,” Analytical Chemistry, Vol.80, No.17, pp. 6731-6740, 2008.
  10. [10] J. C. Carter, R. M. Alvis, S. B. Brown, K. C. Langry, T. S. Wilson, M. T. Mcbride, M. L. Myrick, W. R. Cox, M. E. Grove, and B. W. Colston, “Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept,” Biosensors and Bioelectronics, Vol.21, No.7, pp. 1359-1364, 2006.
  11. [11] C.-W. Lee, D.-H. Nam, Y.-S. Han, K.-C. Chung, and M.-S. Gong, “Humidity sensors fabricated with polyelectrolyte membrane using an ink-jet printing technique and their electrical properties,” Sensors and Actuators B: Chemical, Vol.109, No.2, pp. 334-340, 2005.
  12. [12] T.Wang, C. Cook, and B. Derby, “Fabrication of a Glucose Biosensor by Piezoelectric Inkjet Printing,” the 2009 Third Int. Conf. on Sensor Technologies and Applications, pp. 82-85, 2009.
  13. [13] T. Boland, X. Tao, B. J. Damon, B. Manley, P. Kesari, S. Jalota, and S. Bhaduri, “Drop-on-demand printing of cells and materials for designer tissue constructs,” Materials Science and Engineering: C, Vol.27, No.3, pp. 372-376, 2007.
  14. [14] R. E. Saunders, J. E. Gough, and B. Derby, “Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing,” Biomaterials, Vol.29, No.2, pp. 193-203, 2008.
  15. [15] V. G. Shah and D. B. Wallace, “Low-cost Solar Cell Fabrication by Drop-on-Demand Ink-jet Printing,” IMAPS 37th Annual Int. Symp. on Microelectronics, 2004.
  16. [16] V. G. Shah, D. J. Hayes, and D. B.Wallace, “Ink-Jet as Direct-Write Technology for Fuel Cell Packaging and Manufacturing,” K. Kuang and K. Easler (Eds.) “Fuel Cell Electronics Packaging,” Springer, 2007.
  17. [17] J. Sun, J. H. Ng, Y. H. Fuh, Y. S. Wong, H. T. Loh, and Q. Xu, “Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead,” Microsystem Technologies, Vol.15, No.2, pp. 1437-1448, 2009.
  18. [18] E. R. Lee, “Microdrop Generation,” 1st (Ed.) CRC Press, 2002.
  19. [19] K. S. Kwon, “Methods for detecting air bubble in piezo inkjet dispensers,” Sensors and Actuators A: Physical, Vol.153, No.1, pp. 50-56, 2009.
  20. [20] B.-D. Chan, K.-H. Hsieh, and S.-Y. Yang, “Fabrication of organic flexible electrodes using transfer stamping process,” Microelecronic Engineering, Vol.86, No.4-6, pp. 586-589, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 08, 2019