Paper:
Human Blood Pressure Simulation for Stress Analysis in Model of Vasculature Using Photoelastic Effect
Carlos Tercero*1, 2, Seiichi Ikeda*1, Erick Tijerino*3, 2,
Motoki Matsushima*1, Toshio Fukuda*1, Makoto Negoro*4,
and Ikuo Takahashi*5
*1Micro-Nano Systems Engineering Department, Nagoya University, Furo-cho 1, Chikusa-ku, Nagoya 464-8603, Japan
*2Electronics Engineering Department, Del Valle de Guatemala University, 18 avenida 11-95 Zona 15, Guatemala City, Guatemala
*3Mechanical, Materials and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida 32816-2450, USA
*4Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
*5Department of Neurosurgery, Anjo Kosei Hospital, 28 Higashi Hirokute, Anjo-cho, Anjo, Aichi 446-8602, Japan
- [1] C. Murray and A. Lopez, “Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study,” The Lancet, Vol.349, pp. 1498-1504, 1997.
- [2] K. Kunkler, “The role of Medical simulation: an overview,” Int. it Journal of Medical Robotics and Computer Assisted Surgery, Vol.2, pp. 203-210, 2006.
- [3] Y. Kawanabe, A. Sadato, W. Taki, and N. Hashimoto. “Endovascular Occlusion of Intracranial Aneurysms with Guglielmi Detachable Coils: Correlation Between Coil Packing Density and Coil Compaction,” Acta Neurochir, Vol.143, pp. 451-455, 2001.
- [4] S. Ikeda, C. Tercero, T. Fukuda, Y. Okada, F. Arai, M. Negoro, M. Hayakawa, and I. Takahashi, “Patient-Specific IVR Endovascular Simulator with Augmented Reality for Medical Training and Robot Evaluation,” Journal of Robotics and Mechatronics, Vol.20, No.3, pp. 441-448, 2008.
- [5] P. Serruys, P. de Jaegere, F. Kiemeneij, C. Macaya, W. Rutsch, G. Heyndrickx, H. Emanuelsson, J. Marco, V. Legrand, P. Materne, J. Belardi, U. Sigwart, A. Colombo, J. Goy, P. van den Heuvel, J. Delcan, and M. Morel, “A Comparison of Balloon-Expandable-Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease,” The New England Journal of Medicine, Vol.331, No.8, pp. 489-495, 1994.
- [6] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, and K. Irie, “An in vitro patientspecific biological model of the cerebral artery reproduced with a membranous configuration for simulating endovascular intervention,” J. of Robotics and Mechatronics, Vol.17, No.3, pp. 327-333, 2005.
- [7] S. Ikeda, T. Fukuda, F. Arai, et al., “Patient-specific neurovascular simulator for evaluating the performance of medical robots and instruments,” in Proc. of the IEEE-ICRA, pp. 625-630, 2006.
- [8] C. Tercero, Y. Okada, S. Ikeda, T. Fukuda, K. Sekiyama, M. Negoro, and I. Takahashi. “Numerical evaluation method for catheter prototypes using photo-elastic stress analysis on patient-specific vascular model,” Int. Journal of Medical Robotics and Computer Assisted Surgery, Vol.3:4 pp. 349-354, 2007.
- [9] J. Panza, “High-Normal Blood Pressure more “High” than “Normal”,” N Engl J Med, Vol.345, No.18, pp. 1337-1340, 2001.
- [10] B. De Bruyne, J. Bartunek, S. K. Sys, et al., “Simultaneous coronary pressure and flow velocity measurements in humans,” Circulation, Vol.94, pp. 1842-1849, 1996.
- [11] A. J. Ebenal, S. Vasana, C. Clinton, D. Cox, and T. Shine, “Arterial Blood Pressure System Modeling and Signal Analysis,” in Proc. IEEE-CIRA, pp. 386-391, 2007.
- [12] S. Tong and D. Yang, “Rotor Profiles Synthesis for Lobe Pumps With Given Flow Rate Functions,” Journal of Mechanical Design, Vol.127, pp. 287-294, 2005.
- [13] A. Kuske and G. Robertson, “Photoelastic Stress Analysis,” A Wiley-Interscience Publication, pp. 87-109, 263-274, 1974.
- [14] Y. Okada, S. Ikeda, T. Fukuda, F. Arai, M. Negoro, and I. Takahashi, “Photoelastic Stress Analysis on Patient-Specific Anatomical Model of Cerebral Artery,” in Proc. of the Int. Symposium on Micro-NanoMechatronics and Human Science, pp. 538-543, 2007.
- [15] M. Tanimoto, F. Arai, T. Fukuda, H. Iwata, K. Gotoh, M. Hashimoto, and M. Negoro, “Study on Micro Force Sensor for Minimum Invasive Surgery,” Trans. of the Japan Soc. of Mech. Eng., C 64-620, JSME, pp. 150-155, 1998.
- [16] C. Tercero, S. Ikeda, T. Fukuda, K. Sekiyama, Y. Okada, T. Uchiyama, M. Negoro, and I. Takahashi, “Robot Manipulation and Guidance Using Magnetic Motion Capture Sensor and a Rule-Based Controller,” Journal of Robotics and Mechatronics, Vol.20, No.1, pp. 151-158, 2008.
- [17] C. Tercero, S. Ikeda, T. Uchiyama, T. Fukuda, F. Arai, Y. Okada, Y. Ono, R. Hattori, T. Yamamoto, M. Negoro, and I. Takahashi, “Autonomous Catheter Insertion System using Magnetic Motion Capture Sensor for endovascular surgery,” Int. Journal of Medical Robotics and Computer Assisted Surgery, Vol.3:1, pp. 52-58, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.