single-rb.php

JRM Vol.37 No.2 pp. 489-499
doi: 10.20965/jrm.2025.p0489
(2025)

Paper:

A Mobile Quad-Arm Robot ARMS: Wheeled-Legged Tripedal Locomotion and Loco-Manipulation

Hisayoshi Muramatsu, Keigo Kitagawa, Jun Watanabe, Yuika Yoshimoto, and Ryohei Hisashiki

Mechanical Engineering Program, Hiroshima University
1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan

Received:
August 7, 2024
Accepted:
September 25, 2024
Published:
April 20, 2025
Keywords:
hybrid locomotion, loco-manipulation, wheeled-legged robots, legged robots, wheeled robots
Abstract

This paper proposes a mobile quad-arm robot, ARMS, that unifies wheeled-legged tripedal locomotion, wheeled locomotion, and loco-manipulation. ARMS’s four arms have different mechanical configurations for hybrid locomotion and loco-manipulation and are partially designed to be general-purpose arms. The one three-degree-of-freedom (DOF) arm has an active wheel that is used for wheeled-legged tripedal walking and wheeled driving with passive wheels attached to the torso. The two three-DOF general-purpose arms are series elastic and are used for wheeled-legged tripedal walking, object grasping, and manipulation. The upper two-DOF arm is used for manipulation only, and its position and orientation are determined by coordinating all the arms. Each motor is controlled using an angle controller and trajectory modification with angle, angular velocity, angular acceleration, and torque constraints. The capabilities of ARMS were verified with seven experiments involving joint control, wheeled-legged locomotion, wheeled locomotion and grasping, slope locomotion, block terrain locomotion, carrying a bag, and outdoor locomotion.

Mobile quad-arm robot: ARMS

Mobile quad-arm robot: ARMS

Cite this article as:
H. Muramatsu, K. Kitagawa, J. Watanabe, Y. Yoshimoto, and R. Hisashiki, “A Mobile Quad-Arm Robot ARMS: Wheeled-Legged Tripedal Locomotion and Loco-Manipulation,” J. Robot. Mechatron., Vol.37 No.2, pp. 489-499, 2025.
Data files:
References
  1. [1] B. Katz, J. D. Carlo, and S. Kim, “Mini Cheetah: A platform for pushing the limits of dynamic quadruped control,” Proc. IEEE Int. Conf. Robot. Autom., pp. 6295-6301, 2019. https://doi.org/10.1109/ICRA.2019.8793865
  2. [2] N. Kau, A. Schultz, N. Ferrante, and P. Slade, “Stanford Doggo: An open-source, quasi-direct-drive quadruped,” Proc. IEEE Int. Conf. Robot. Autom., pp. 6309-6315, 2019. https://doi.org/10.1109/ICRA.2019.8794436
  3. [3] J. Kim, T. Kang, D. Song, and S.-J. Yi, “Design and control of a open-source, low cost, 3D printed dynamic quadruped robot,” Appl. Sci., Vol.11, No.9, Article No.3762, 2021. https://doi.org/10.3390/app11093762
  4. [4] Y. H. Lee, Y. H. Lee, H. Lee, H. Kang, J. H. Lee, L. T. Phan, S. Jin, Y. B. Kim, D.-Y. Seok, S. Y. Lee, H. Moon, J. C. Koo, and H. R. Choi, “Development of a quadruped robot system with torque-controllable modular actuator unit,” IEEE Trans. Ind. Electron., Vol.68, No.8, pp. 7263-7273, 2021. https://doi.org/10.1109/TIE.2020.3007084
  5. [5] P. Arm, R. Zenkl, P. Barton, L. Beglinger, A. Dietsche, L. Ferrazzini, E. Hampp, J. Hinder, C. Huber, D. Schaufelberger, F. Schmitt, B. Sun, B. Stolz, H. Kolvenbach, and M. Hutter, “SpaceBok: A dynamic legged robot for space exploration,” Proc. IEEE Int. Conf. Robot. Autom., pp. 6288-6294, 2019. https://doi.org/10.1109/ICRA.2019.8794136
  6. [6] P. Čížek, M. Zoula, and J. Faigl, “Design, construction, and rough-terrain locomotion control of novel hexapod walking robot with four degrees of freedom per leg,” IEEE Access, Vol.9, pp. 17866-17881, 2021. https://doi.org/10.1109/ACCESS.2021.3053492
  7. [7] X. Zhang, Y. Xie, L. Jiang, G. Li, J. Meng, and Y. Huang, “Fault-tolerant dynamic control of a four-wheel redundantly-actuated mobile robot,” IEEE Access, Vol.7, pp. 157909-157921, 2019. https://doi.org/10.1109/ACCESS.2019.2949746
  8. [8] T. Hagiwara, Y. Yamamura, Y. Namima, J. Ogami, and L. Pengfei, “Production of crawler robot with sub crawler and verification of traversing ability,” Proc. ICA-SYMP, 2021. https://doi.org/10.1109/ICA-SYMP50206.2021.9358446
  9. [9] T. Takaki, T. Aoyama, and I. Ishii, “Development of inverted pendulum robot capable of climbing stairs using planetary wheel mechanism,” Proc. IEEE Int. Conf. Robot. Autom., pp. 5618-5624, 2013. https://doi.org/10.1109/ICRA.2013.6631384
  10. [10] K. Kaneko, H. Kaminaga, T. Sakaguchi, S. Kajita, M. Morisawa, I. Kumagai, and F. Kanehiro, “Humanoid robot HRP-5P: An electrically actuated humanoid robot with high-power and wide-range joints,” IEEE Robot. Autom. Lett., Vol.4, No.2, pp. 1431-1438, 2019. https://doi.org/10.1109/LRA.2019.2896465
  11. [11] J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo, R. Burger, A. Beyer, O. Eiberger, K. Schmid, and A. Albu-Schäffer, “Overview of the torque-controlled humanoid robot TORO,” Proc. IEEE-RAS Int. Conf. Humanoid Robots, pp. 916-923, 2014. https://doi.org/10.1109/HUMANOIDS.2014.7041473
  12. [12] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier, J. Mirabel, A. Del Prete, P. Souères, N. Mansard, F. Lamiraux, J.-P. Laumond, L. Marchionni, H. Tome, and F. Ferro, “TALOS: A new humanoid research platform targeted for industrial applications,” Proc. IEEE-RAS Int. Conf. Humanoid Robots, pp. 689-695, 2017. https://doi.org/10.1109/HUMANOIDS.2017.8246947
  13. [13] P. Hebert, M. Bajracharya, J. Ma, N. Hudson, A. Aydemir, J. Reid, C. Bergh, J. Borders, M. Frost, M. Hagman, J. Leichty, P. Backes, B. Kennedy, P. Karplus, B. Satzinger, K. Byl, K. Shankar, and J. Burdick, “Mobile manipulation and mobility as manipulation—Design and algorithms of RoboSimian,” J. Field Robot., Vol.32, No.2, pp. 255-274, 2015. https://doi.org/10.1002/rob.21566
  14. [14] N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M. Hoffman, M. Kamedula, G. F. Rigano, J. Malzahn, S. Cordasco, P. Guria, A. Margan, and N. G. Tsagarakis, “CENTAURO: A hybrid locomotion and high power resilient manipulation platform,” IEEE Robot. Autom. Lett., Vol.4, No.2, pp. 1595-1602, 2019. https://doi.org/10.1109/LRA.2019.2896758
  15. [15] M. Bjelonic, C. D. Bellicoso, Y. de Viragh, D. Sako, F. D. Tresoldi, F. Jenelten, and M. Hutter, “Keep rollin’—Whole-body motion control and planning for wheeled quadrupedal robots,” IEEE Robot. Autom. Lett., Vol.4, No.2, pp. 2116-2123, 2019. https://doi.org/10.1109/LRA.2019.2899750
  16. [16] V. S. Medeiros, E. Jelavic, M. Bjelonic, R. Siegwart, M. A. Meggiolaro, and M. Hutter, “Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain,” IEEE Robot. Autom. Lett., Vol.5, No.3, pp. 4172-4179, 2020. https://doi.org/10.1109/LRA.2020.2990720
  17. [17] M. Schwarz, T. Rodehutskors, M. Schreiber, and S. Behnke, “Hybrid driving-stepping locomotion with the wheeled-legged robot momaro,” Proc. IEEE Int. Conf. Robot. Autom., pp. 5589-5595, 2016.
  18. [18] Z. Chen, S. Wang, J. Wang, K. Xu, T. Lei, H. Zhang, X. Wang, D. Liu, and J. Si, “Control strategy of stable walking for a hexapod wheel-legged robot,” ISA Trans., Vol.108, pp. 367-380, 2021. https://doi.org/10.1016/j.isatra.2020.08.033
  19. [19] G. Endo and S. Hirose, “Study on roller-walker – multi-mode steering control and self-contained locomotion –,” J. Robot. Mechatron., Vol.12, No.5, pp. 559-566, 2000. https://doi.org/10.20965/jrm.2000.p0559
  20. [20] K. Nagano and Y. Fujimoto, “Simplification of motion generation in the singular configuration of a wheel-legged mobile robot,” IEEJ J. Ind. Appl., Vol.8, No.5, pp. 745-755, 2019. https://doi.org/10.1541/ieejjia.8.745
  21. [21] M. Kumagai and K. Tamada, “Wheel locomotion of a biped robot using passive rollers – large biped robot roller walking using a variable-curvature truck –,” J. Robot. Mechatron., Vol.20, No.2, pp. 206-212, 2008. https://doi.org/10.20965/jrm.2008.p0206
  22. [22] C. Zhang, T. Liu, S. Song, and M. Q.-H. Meng, “System design and balance control of a bipedal leg-wheeled robot,” Proc. IEEE-RAS Int. Conf. Robot. Biomimetics, pp. 1869-1874, 2019. https://doi.org/10.1109/ROBIO49542.2019.8961814
  23. [23] V. Klemm, A. Morra, C. Salzmann, F. Tschopp, K. Bodie, L. Gulich, N. Küng, D. Mannhart, C. Pfister, M. Vierneisel, F. Weber, R. Deuber, and R. Siegwart, “Ascento: A two-wheeled jumping robot,” Proc. IEEE Int. Conf. Robot. Autom., pp. 7515-7521, 2019. https://doi.org/10.1109/ICRA.2019.8793792
  24. [24] X. Qiu, Z. Yu, L. Meng, X. Chen, L. Zhao, G. Huang, and F. Meng, “Upright and crawling locomotion and its transition for a wheel-legged robot,” Micromachines, Vol.13, No.8, 2022. https://doi.org/10.3390/mi13081252
  25. [25] C. Zhang, T. Liu, S. Song, J. Wang, and M. Q.-H. Meng, “Dynamic wheeled motion control of wheel-biped transformable robots,” Biomimetic Intell. Robot., Vol.2, No.2, Article No.100027, 2022. https://doi.org/10.1016/j.birob.2021.100027
  26. [26] T. Yoshioka, T. Takubo, T. Arai, and K. Inoue, “Hybrid locomotion of leg-wheel asterisk h,” J. Robot. Mechatron., Vol.20, No.3, pp. 403-412, 2008. https://doi.org/10.20965/jrm.2008.p0403
  27. [27] E. C. Orozco-Magdaleno, F. Gómez-Bravo, E. Castillo-Castañeda, and G. Carbone, “Evaluation of locomotion performances for a mecanum-wheeled hybrid hexapod robot,” IEEE/ASME Trans. Mechatronics, Vol.26, No.3, pp. 1657-1667, 2021. https://doi.org/10.1109/TMECH.2020.3027259
  28. [28] K. Tadakuma, R. Tadakuma, A. Maruyama, E. Rohmer, K. Nagatani, K. Yoshida, A. Ming, M. Shimojo, M. Higashimori, and M. Kaneko, “Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter,” Proc. IEEE Int. Conf. on Intelligent Robots and Systems, pp. 3358-3365, 2010. https://doi.org/10.1109/IROS.2010.5651912
  29. [29] W.-H. Chen, H.-S. Lin, Y.-M. Lin, and P.-C. Lin, “TurboQuad: A novel leg-wheel transformable robot with smooth and fast behavioral transitions,” IEEE Trans. Robot., Vol.33, No.5, pp. 1025-1040, 2017. https://doi.org/10.1109/TRO.2017.2696022
  30. [30] C. Zheng and K. Lee, “WheeLeR: Wheel-leg reconfigurable mechanism with passive gears for mobile robot applications,” Proc. IEEE Int. Conf. Robot. Autom., pp. 9292-9298, 2019. https://doi.org/10.1109/ICRA.2019.8793686
  31. [31] Y. Kim, Y. Lee, S. Lee, J. Kim, H. S. Kim, and T. Seo, “STEP: A new mobile platform with 2-DOF transformable wheels for service robots,” IEEE/ASME Trans. Mechatronics, Vol.25, No.4, pp. 1859-1868, 2020. https://doi.org/10.1109/TMECH.2020.2992280
  32. [32] C. Sun, G. Yang, S. Yao, Q. Liu, J. Wang, and X. Xiao, “RHex-T3: A transformable hexapod robot with ladder climbing function,” IEEE/ASME Trans. Mechatronics, Vol.28, No.4, pp. 1939-1947, 2023. https://doi.org/10.1109/TMECH.2023.3276756
  33. [33] J. Hooks, M. S. Ahn, J. Yu, X. Zhang, T. Zhu, H. Chae, and D. Hong, “ALPHRED: A multi-modal operations quadruped robot for package delivery applications,” IEEE Robot. Autom. Lett., Vol.5, No.4, pp. 5409-5416, 2020. https://doi.org/10.1109/LRA.2020.3007482
  34. [34] R. Kikuuwe, “A sliding-mode-like position controller for admittance control with bounded actuator force,” IEEE/ASME Trans. Mechatronics, Vol.19, No.5, pp. 1489-1500, 2014. https://doi.org/10.1109/TMECH.2013.2286411
  35. [35] R. Kikuuwe, S. Yasukouchi, H. Fujimoto, and M. Yamamoto, “Proxy-based sliding mode control: A safer extension of PID position control,” IEEE Trans. Robot., Vol.26, No.4, pp. 670-683, 2010. https://doi.org/10.1109/TRO.2010.2051188
  36. [36] R. Kikuuwe and H. Fujimoto, “Proxy-based sliding mode control for accurate and safe position control,” Proc. IEEE Int. Conf. Robot. Autom., pp. 25-30, 2006. https://doi.org/10.1109/ROBOT.2006.1641156

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 24, 2025