Paper:
Layout Optimization of Cooperative Distributed Microphone Arrays Based on Estimation of Source Separation Performance
Kouhei Sekiguchi, Yoshiaki Bando, Katsutoshi Itoyama, and Kazuyoshi Yoshii
Graduate School of Informatics, Kyoto University
Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan
- [1] H. G. Okuno, K. Nakadai, and H.-D. Kim, “Robot Audition: Missing Feature Theory Approach and Active Audition,” Robotics Research, Vol.70, pp. 227-244, Springer, 2011.
- [2] E. Martinson, T. Apker, and M. Bugajska, “Optimizing a Reconfigurable Robotic Microphone Array,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 125-130, 2011.
- [3] T. Nakashima, K. Komatani, and S. Sato, “Natural Interaction with Robots, Knowbots and Smartphones,” chapter Integration of Multiple Sound Source Localization Results for Speaker Identification in Multiparty Dialogue System, pp. 153-165, Springer, 2014.
- [4] K. Sekiguchi, Y. Bando, K. Itoyama, and K. Yoshii, “Optimizing the Layout of Multiple Mobile Robots for Cooperative Sound Source Separation,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5548-5554, 2015.
- [5] K. Nakadai, H. G. Okuno, and H. Kitano, “Real-Time Sound Source Localization and Separation for Robot Audition,” IEEE Int. Conf. on Spoken Language Processing, pp. 193-196, 2002.
- [6] H. Miura, T. Yoshida, K. Nakamura, and K. Nakadai, “SLAM-based Online Calibration of Asynchronous Microphone Array for Robot Audition,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 524-529, 2011.
- [7] D. Su, T. Vidal-Calleja, and J. V. Miro, “Simultaneous Asynchronous Microphone Array Calibration and Sound Source Localisation,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5561-5567, 2015.
- [8] H. Nakajima, K. Nakadai, Y. Hasegawa, and H. Tsujino, “Blind Source Separation With Parameter-Free Adaptive Step-Size Method for Robot Audition,” IEEE Trans. on Audio, Speech and Language Processing, Vol.18, No.6, pp. 1476-1485, 2010.
- [9] K. Nakadai, T. Lourens, H. G. Okuno, and H. Kitano, “Active Audition for Humanoid,” American Association for Artificial Intelligence, pp. 832-839, 2000.
- [10] E. Berglund and J. Sitte, “Sound Source Localisation Through Active Audition,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 509-514, 2005.
- [11] H.-D. Kim, J.-S. Choi, and M. Kim, “Human-Robot Interaction in Real Environment by Audio-Visual Integration,” J. of Control, Automation and Systems, Vol.5, No.1, pp. 61-69, 2007.
- [12] G. L. Reid and E. Milios, “Active Stereo Sound Localization,” J. of Acoustical Society of America, Vol.113, No.1, pp. 185-193, 2003.
- [13] Y. Sasaki, S. Kagami, and H. Mizoguchi, “Multiple Sound Source Mapping for a Mobile Robot by Self-motion Triangulation,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 380-385, 2006.
- [14] T. Yoshida and K. Nakadai, “Active Audio-Visual Integration for Voice Activity Detection based on a Causal Bayesian Network,” IEEE RAS Int. Conf. on Humanoid Robots, pp. 370-375, 2012.
- [15] Y. Sasaki, T. Fujihara, S. Kagami, H. Mizoguchi, and K. Oro, “32-Channel Omni-Directional Microphone Array Design and Implementation,” J. of Robotics and Mechatronics, Vol.23, No.3, pp. 378-385, 2011.
- [16] N. Mitianoudis and M. Davies, “Independent Component Analysis and Blind Signal Separation,” Lecture Notes in Computer Science, Vol.3195, chapter Permutation Alignment for Frequency Domain ICA Using Subspace Beamforming Methods, pp. 669-676, Springer, 2004.
- [17] L. Parra and C. Spence, “Convolutive Blind Separation of Nonstationary Sources,” IEEE Trans. on Speech and Audio Processing, Vol.8, No.3, pp. 320-327, 2000.
- [18] R. Mazur and A. Mertins, “A CUDA Implementation of Independent Component Analysis in the Time-frequency Domain,” European Signal Processing Conf., 2011.
- [19] J. Hao, I. Lee, T.-W. Lee, and T. J. Sejnowski, “Independent Vector Analysis for Source Separation Using a Mixture of Gaussians Prior,” J. of Neural Computatation, Vol.22, No.6, ppp. 1646-1673, 2010.
- [20] I. Lee, T. Kim, and T.-W. Lee, “Fast Fixed-point Independent Vector Analysis Algorithms for Convolutive Blind Source Separation,” J. of Signal Processing, Vol.87, No.8, pp. 1859-1871, 2007.
- [21] H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, and K. Shikano, “Blind Source Separation Based on a Fast-Convergence Algorithm Combining ICA and Beamforming,” IEEE Trans. on Audio, Speech and Language Processing, Vol.14, No.2, pp. 666-678, 2006.
- [22] J. Mockus, “On Bayesian Methods for Seeking the Extremum,” Proceedings of the IFIP Technical Conf., pp. 400-404, Springer-Verlag, 1974.
- [23] Y. Sagisaka and N. Uratani, “ATR Spoken Language Database,” J. of the Acoustic Society of Japan, Vol.48, No.12, pp. 878-882, 1992.
- [24] C. Raffel, B. McFee, E. J. humphrey, J. Salamon, O. Nieto, D. Liang, and D. P. W. Ellis, “mir eval: A Transparent Implementation of Common MIR Metrics,” The Int. Society of Music Information Retrieval, pp. 367-372, 2014.
- [25] E. Vincent, R. Gribonval, and C. Fevotte, “Performance Measurement in Blind Audio Source Separation,” IEEE Trans. on Audio, Speech and Language Processing, Vol.14, No.4, pp. 1462-1469, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.