single-rb.php

JRM Vol.26 No.3 pp. 331-340
doi: 10.20965/jrm.2014.p0331
(2014)

Paper:

Robust Hybrid Control for Two-Dimensional Handheld Micromanipulator

Sungwan Boksuwan*, Taworn Benjanarasuth**, Chisato Kanamori*,
and Hisayuki Aoyama*

*Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

**Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung Soi 1, Ladkrabang District, Bangkok, Thailand

Received:
October 7, 2013
Accepted:
March 24, 2014
Published:
June 20, 2014
Keywords:
handheld micromanipulator, parallel beam structure, explicit MPC, PID controller
Abstract

A handheld micromanipulator

This paper proposes a two-dimensional handheld micromanipulator oriented toward bio cell handling. The micromanipulator consists of two flexible links, each of which is constructed with a parallel beam structure. Electric coils and permanent magnets are used to produce an actuator to form double drivers. An explicit model predictive control combined with a PID controller called a robust hybrid control is proposed not only to achieve robust tracking performance, but also to dampen the vibration of the mechanism. The experimental results are compared to results from a standard PID controller to investigate the effectiveness of the micromanipulator.

Cite this article as:
S. Boksuwan, T. Benjanarasuth, C. Kanamori, and <. Aoyama, “Robust Hybrid Control for Two-Dimensional Handheld Micromanipulator,” J. Robot. Mechatron., Vol.26, No.3, pp. 331-340, 2014.
Data files:
References
  1. [1] H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surgery, Vol.4, No.1, pp. 15-25, 1999.
  2. [2] Y. M. Baek, Y. Kozuka, N. Sugita, A. Morita, S. Sora, R. Mochizuki, and M. Mitsuishi, “Highly precise Master-Slave Robot System for Super Micro Surgery,” In Proc. the 2010 3rd IEEE RAS & EMBS Int. Conf. Bio. Robot. and Biomechatronics, Japan, Sep. 2010.
  3. [3] R. Kumar, P. Jensen, and R. H. Tayor, “Experiments with a Steady Hand Robot in Constrained Compliant Motion and Path Following,” in Proc. IEEE Int. on Robot and Human Interaction, Italy, Sep. 1999.
  4. [4] A. Bettini, P. Marayong, S. Lang, A. M. Okamura, and G. D. Hager, “Vision-Assisted Control for Manipulation Using Virtual Fixtures,” IEEE Trans. Robot., Vol.20, No.6, pp. 953-966, 2004.
  5. [5] B. Bose, A. Kalra, S. Thukral, A. Sood, S. Guha, and S. Anand, “Tremor compensation for robotics assisted microsurgery,” Engineering in Medicine and Biology Society, 1992 14th Annual IEEE Int. Conf., Vol.3, pp. 1067-1068, 1992.
  6. [6] D. Y. Choi and C. N. Riviere, “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” in Proc. IEEE Engineering in Medicine and Biology 27th Annual Conf., China, pp. 5085-5088, Sep. 2005.
  7. [7] W. T. Latt C. Y. Shee, and W. T. Ang, “A Compact Handheld Active Physiological Tremor Compensation Instrument,” 2009 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Singapore, pp. 711-716, July 2009.
  8. [8] S. Yang, R. A. MacLachlan, and C. N. Riviere, “Design and Analysis of 6 DOF Handheld Micromanipulator,” 2012 IEEE Int. Conf. Robot. Autom., USA, pp. 1946-1951, May 2012.
  9. [9] R. A. MacLachlan, B. C. Becker, J. C. Tabarés, G. W. Podnar, L. A. Lobes, Jr., and C. N. Riviere, “Micron: An Actively Stabilized Handheld Tool forMicrosurgery,” IEEE Trans. Robot., Vol.28, No.1, pp. 195-212, 2012.
  10. [10] S. Skogestad and L. Postletwaite, “Multivariable Feedback Control: Analysis and Design,” 2nd Edition, John wiley & Sons, 2005.
  11. [11] L. J. Everett, J. Tang, and M. Compere, “Designing Flexible Manipulators with the Lowest Natural Frequency Nearly Independent of Position,” IEEE Trans. Robot., Vol.15, No.4, pp. 605-611, 1999.
  12. [12] T. Fukuda, H. Sato, F. Arai, H. Iwata, and K. Itoigawa, “Parallel Beam Micro Sensor/Actuator Unit Using PZT Thin Films and Its Application Examples,” in Proc. IEEE Int. Conf. Robot. Autom., Leuven, Belgium, pp. 1498-1503, May 1998.
  13. [13] H. Sato, T. Fukuda, F. Arai, K. Itoigawa, and Y. Tsukahara, “Suppression of Mechanical Coupling for Parallel Beam Gyrscope,” in Proc. IEEE Int. Conf. Robot. Autom., San Francisco, pp. 3939-3944, April 2000.
  14. [14] C. E. García, D. M. Prett, and M. Morari, “Model Predictive Control: Theory and Practice – a Survey,” Automatica, Vol.25, No.3, pp. 335-348, 1989.
  15. [15] M. Morari and J. H. Lee, “Model Predictive Control: Past, Present and Future,” Computers and Chemical Engineering, Vol.23, pp. 667-682, 1999.
  16. [16] A. Bemporad and M. Morari, “Robust Model Predictive Control: A Survey,” J. Robustness in Identification and Control, Vol.245, pp. 207-226, 1999.
  17. [17] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained Model Predictive Control: Stability and Optimality,” Automatica, Vol.36, pp. 789-814, 2000.
  18. [18] J. M. Maciejowski, “Predictive Control with Constraints,” Englewood Cliffs, NJ: Prentice-Hall, 2002.
  19. [19] S. Qin and T. Badgwell, “A survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, Vol.11, pp. 733-764, 2003.
  20. [20] A. Aswani, J. Taneja, and C. Tomlin, “Reducing Transient and Steady State Electricity Consumption in HVAC Using Learning-Based Model Predictive Control,” Proc. IEEE, Vol.100, No.1, pp. 240-253, 2012.
  21. [21] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann, and M. Morari, “Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control,” Energy and Building, Vol.45, pp. 15-27, 2012.
  22. [22] S. Bolognani and L. Peretti, “Design and Implementation of Model Predictive Control for Electrical Motor Drives,” IEEE Trans. Ind. Electron., Vol.56, No.6, pp. 1925-1936, 2009.
  23. [23] S. Mariéthoz, A. Domahidi, and M. Morari, “High-Bandwidth Explicit Model Predictive Control of Electrical Drives,” IEEE Trans. Ind. Appl., Vol.48, No.6, pp. 1980-1992, 2012.
  24. [24] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky, “The Development of Model Predictive Control in Automotive Industry: A Survey,” in Proc. IEEE Int. Conf. Cont. Appl., Dubrovnik, Croatia, October 3-5, 2012.
  25. [25] M. Hassan, R. Dubay, C. Li, and R. Wang, “Active Vibration Control of a Flexible One-Link Manipulator using a Multivariable Predictive Controller,” Mechatronics, Vol.17, pp. 311-323, 2007.
  26. [26] A. G. Wills, D. Bates, A. J. Fleming, B. Ninness, and S. O. R. Moheimani, “Model Predictive Control Applied to Constraint Handling in Active Noise and Vibration Control,” IEEE. Trans. Control Syst. Technol., Vol.16, No.1, pp. 3-12, 2008.
  27. [27] P. Boscariol, A. Gasparetto, and V. Zanotto, “Model Predictive Control of a Flexible Links Mechanism,” J. Intell Robot Syst., Vol.58, pp. 125-147, 2010.
  28. [28] S. Boksuwan and T. Benjanarasuth, “Robust Real-time Model Predictive Control for Torsional Vibration System,” Int. J. Automation Tech., Vol.6, No.3, 2012.
  29. [29] A. Bemporad, F. Borrelli, and M.Morari, “Model predictive control based on linear programming the explicit solution,” IEEE Trans. Autom. Control, Vol.47, pp. 1974-1985, 2002.
  30. [30] M. Kvasnica, “Real-Time Model Predictive Control via Multi-Parametric Programming: Theory and Tools,” VDM Verlag Dr. Müller, 2009.
  31. [31] S. Skogestad, “Simple Analytic Rule for Model Reduction and PID Controller Tuning,” J.of Process Control, Vol.13, pp. 291-309, 2003.
  32. [32] U. Macder, F. Bomelli, and M. Morari, “Linear offset-free Model Predictive Control,” Automatica, Vol.45, pp. 2214-2222, 2009.
  33. [33] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, Vol.38, pp. 3-20, January 2002.
  34. [34] R. A. MacLachlan, B. C. Becker, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: An actively Stabilized Handheld Tool for Microsurgery,” IEEE Trans. Robotics, Vol.28, No.1, pp. 195-212, 2012.

  35. Supporting Online Materials:
  36. [a] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari, “Multiparametric Toolbox (MPT).”
    http://control.ee.ethz.ch/˜mpt/
    [Accessed October 9, 2012]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 16, 2018