Paper:
Generating Situation-Dependent Behavior: Decentralized Control of Multi-Functional Intestine-Like Robot that can Transport and Mix Contents
Takeshi Kano*, Toshihiro Kawakatsu**, and Akio Ishiguro*,***
*Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
**Department of Physics, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
***Japan Science and Technology Agency, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
- [1] T. Umedachi, K. Takeda, T. Nakagaki, R. Kobayashi, and A. Ishiguro, “Fully Decentralized Control of a Soft-bodied Robot Inspired by True Slime Mold,” Biol. Cybern., Vol.102, No.3, pp. 261-269, Mar. 2010.
- [2] T. Sato, T. Kano, and A. Ishiguro, “On the Applicability of the Decentralized Control Mechanism Extracted from the True Slime Mold: a Robotic Case Study with a Serpentine Robot,” Bioinsp. Biomim., Vol.6, No.2, 026006, Apr. 2011.
- [3] W.Watanabe, T. Kano, S. Suzuki, and A. Ishiguro, “A decentralized control scheme for orchestrating versatile arm movements in ophiuroid omnidirectional locomotion,” J. Roy. Soc. Int., Vol.9, No.66, pp. 102-109, Jul. 2012.
- [4] A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, and I. Endo, “Spatio-temporal Symmetry in Rings of Coupled Biological Oscillators of Physarum plasmodium,” Phys. Rev. Lett., Vol.87, No.7, 078102, Jul. 2001.
- [5] S. Grillner, “Neural Networks for Vertebrate Locomotion,” Sci. American., Vol.274, No.1, pp. 64-69, Jan. 1996.
- [6] S. Grillner, O. Ekeberg, A.Manira, A. Lansner, D. Parker, J. Tegnér, and P. Wallén, “Intrinsic Function of a Neuronal Network – A Vertebrate Central Pattern Generator,” Brain Res. Rev., Vol.26, No.2-3, pp. 184-197, May 1998.
- [7] A. A. V. Hill, M. A. Mashino, and R. L. Calabrese, “Intersegmental Coordination of Rhythmic Motor Patterns,” J. Neurophysiol., Vol.90, No.2, pp. 531-538, Aug. 2003.
- [8] A. J. Ijspeert, “Central Pattern Generators for Locomotion Control in Animals and Robots: A Review,” Neural Networks, Vol.21, No.4, pp. 642-653, May 2008.
- [9] S. Rossignol, R. Dubuc, and J. P. Gossard, “Dynamic Sensorimotor Interactions in Locomotion,” Physiol. Rev., Vol.86, No.1, pp. 89-154, Jan. 2005.
- [10] A. Frigon, “Central Pattern Generators of the Mammalian Spinal Cord,” Neurosci., Vol.18, No.1, pp. 56-69, Feb. 2012.
- [11] Y. Umetani and N. Inou, “Biomechanical Study of Peristalsis – Neural Control Mechanism of Transport in Gastrointestines –,” J. Soc. Inst. Contr. Eng., Vol.17, No.1, pp. 133-138, 1981 (in Japanese).
- [12] Y. Umetani and N. Inou, “Biomechanical Study of Peristalsis – Neural Mechanism of Rhythmic Segmentation –,” J. Soc. Inst. Contr. Eng., Vol.21, pp. 965-969, 1985 (in Japanese).
- [13] Y. Umetani and N. Inou, “Biomechanical Study of Peristalsis – Modeling and Analysis of Intestinal Movements –,” J. Soc. Inst. Contr. Eng., Vol.22, pp. 1081-1086, 1986 (in Japanese).
- [14] N. Inou and Y. Umetani, “Small Intestinal Movements in vivo and the Neuro-mechanical Control Mechanisms,” in Proc. Int. Symp. on Auton. Decent. Sys., pp. 407-413, 1993.
- [15] B. H. Brown, H. L. Duthie, A. R. Horn, and R. H. Smallwood, “A Linked Oscillator Model of Electrical Activity of Human Small Intestine,” Am. J. Physiol., Vol.229, No.2, pp. 384-388, Aug. 1975.
- [16] B. Robertson-Dunn and D. A. Linkens, “A Mathematical Model of the Slow-wave Electrical Activity of the Human Small Intestine,” Med. Biol. Eng., Vol.12, No.6, pp. 750-758, Nov. 1974.
- [17] N. E. Diamant and A. Bortoff, “Nature of the Intestinal Slow-wave Frequency Gradient,” Am. J. Physiol., Vol.216, No.2, pp. 301-307, Feb. 1969.
- [18] W. A. Weems, “The Intestine as a Fluid Propelling System,” Annu. Rev. Physiol., Vol.43, pp. 9-19, Mar. 1981.
- [19] M. L. Buist, A. Corrias, and Y. C. Poh, “A Model of Slow Wave Propagation and Entrainment along the Stomach,” Ann. of Biomed. Eng., Vol.38, No.9, pp. 3022-3030, Sep. 2010.
- [20] J. D. Chambers, J. C. Bornstein, and E. A. Thomas, “Multiple Neural Oscillators and Muscle Feedback Are Required for the Intestinal Fed State Motor Program,” PLoS One, Vol.6, No.5, e19597, May 2011.
- [21] P. Du, G. O’Grady, S. J. Gibbons, R. Yassi, R. Lees-Green, G. Farrugia, L. K. Cheng, and A. J. Pullan, “Tissue-Specific Mathematical Models of Slow Wave Entrainment in Wild-Type and 5-HT2B Knock-out Mice with Altered Interstitial Cells of Cajal Networks,” Biophys. J., Vol.98, No.9, pp. 1772-1781, May 2010.
- [22] J. D. Huizinga and W. J. E. P. Lammers, “Gut Peristalsis is Governed by a Multitude of Cooperating Mechanisms,” Am. J. Physiol. Gastrointest. Liver Physiol., Vol.296, No.1, G1-G8, Jan. 2009.
- [23] T. Nakamura and K. Suzuki, “Development of a Peristaltic Pump Based on Bowel Peristalsis Using Artificial Rubber Muscle,” Adv. Robotics, Vol.25, No.3-4, pp. 371-385, Apr. 2011.
- [24] K. Suzuki and T. Nakamura, “Development of a Peristaltic Pump Based on Bowel Peristalsis Using for Artificial Rubber Muscle,” in Proc. of the 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3085-3090, 2010.
- [25] J. E. Jones, “On the Determination of Molecular Fields II: From the Equation of State of a Gas,” Proc. R. Soc. Lond. A, Vol.106, No.738, pp. 463-477, Oct. 1924.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.