JRM Vol.25 No.5 pp. 871-876
doi: 10.20965/jrm.2013.p0871


Generating Situation-Dependent Behavior: Decentralized Control of Multi-Functional Intestine-Like Robot that can Transport and Mix Contents

Takeshi Kano*, Toshihiro Kawakatsu**, and Akio Ishiguro*,***

*Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

**Department of Physics, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

***Japan Science and Technology Agency, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0075, Japan

January 16, 2013
September 9, 2013
October 20, 2013
autonomous decentralized control, intestinal movement, situation-dependent behavior
Most robots are designed to perform a specific task in a predefined environment and have difficulty in producing situation-dependent behavior. To tackle this problem, we focus here on a mammal intestine that either transports or mixes the contents depending on the encountered circumstances. We propose a simple model for the intestinal movement and design an autonomous decentralized control scheme for an intestine-like robot by using coupled oscillators with local sensory feedback. Simulation results show that different types of motions are generated depending on the the physical conditions of the intestine and its contents. Our simulated robot does not require any input from a higher center to switch between different types of motions but determines autonomously which motion to generate. This study thus paves the way for developing “multi-functional robots” whose behavior is changed flexibly and spontaneously depending on circumstances.
Cite this article as:
T. Kano, T. Kawakatsu, and A. Ishiguro, “Generating Situation-Dependent Behavior: Decentralized Control of Multi-Functional Intestine-Like Robot that can Transport and Mix Contents,” J. Robot. Mechatron., Vol.25 No.5, pp. 871-876, 2013.
Data files:
  1. [1] T. Umedachi, K. Takeda, T. Nakagaki, R. Kobayashi, and A. Ishiguro, “Fully Decentralized Control of a Soft-bodied Robot Inspired by True Slime Mold,” Biol. Cybern., Vol.102, No.3, pp. 261-269, Mar. 2010.
  2. [2] T. Sato, T. Kano, and A. Ishiguro, “On the Applicability of the Decentralized Control Mechanism Extracted from the True Slime Mold: a Robotic Case Study with a Serpentine Robot,” Bioinsp. Biomim., Vol.6, No.2, 026006, Apr. 2011.
  3. [3] W.Watanabe, T. Kano, S. Suzuki, and A. Ishiguro, “A decentralized control scheme for orchestrating versatile arm movements in ophiuroid omnidirectional locomotion,” J. Roy. Soc. Int., Vol.9, No.66, pp. 102-109, Jul. 2012.
  4. [4] A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, and I. Endo, “Spatio-temporal Symmetry in Rings of Coupled Biological Oscillators of Physarum plasmodium,” Phys. Rev. Lett., Vol.87, No.7, 078102, Jul. 2001.
  5. [5] S. Grillner, “Neural Networks for Vertebrate Locomotion,” Sci. American., Vol.274, No.1, pp. 64-69, Jan. 1996.
  6. [6] S. Grillner, O. Ekeberg, A.Manira, A. Lansner, D. Parker, J. Tegnér, and P. Wallén, “Intrinsic Function of a Neuronal Network – A Vertebrate Central Pattern Generator,” Brain Res. Rev., Vol.26, No.2-3, pp. 184-197, May 1998.
  7. [7] A. A. V. Hill, M. A. Mashino, and R. L. Calabrese, “Intersegmental Coordination of Rhythmic Motor Patterns,” J. Neurophysiol., Vol.90, No.2, pp. 531-538, Aug. 2003.
  8. [8] A. J. Ijspeert, “Central Pattern Generators for Locomotion Control in Animals and Robots: A Review,” Neural Networks, Vol.21, No.4, pp. 642-653, May 2008.
  9. [9] S. Rossignol, R. Dubuc, and J. P. Gossard, “Dynamic Sensorimotor Interactions in Locomotion,” Physiol. Rev., Vol.86, No.1, pp. 89-154, Jan. 2005.
  10. [10] A. Frigon, “Central Pattern Generators of the Mammalian Spinal Cord,” Neurosci., Vol.18, No.1, pp. 56-69, Feb. 2012.
  11. [11] Y. Umetani and N. Inou, “Biomechanical Study of Peristalsis – Neural Control Mechanism of Transport in Gastrointestines –,” J. Soc. Inst. Contr. Eng., Vol.17, No.1, pp. 133-138, 1981 (in Japanese).
  12. [12] Y. Umetani and N. Inou, “Biomechanical Study of Peristalsis – Neural Mechanism of Rhythmic Segmentation –,” J. Soc. Inst. Contr. Eng., Vol.21, pp. 965-969, 1985 (in Japanese).
  13. [13] Y. Umetani and N. Inou, “Biomechanical Study of Peristalsis – Modeling and Analysis of Intestinal Movements –,” J. Soc. Inst. Contr. Eng., Vol.22, pp. 1081-1086, 1986 (in Japanese).
  14. [14] N. Inou and Y. Umetani, “Small Intestinal Movements in vivo and the Neuro-mechanical Control Mechanisms,” in Proc. Int. Symp. on Auton. Decent. Sys., pp. 407-413, 1993.
  15. [15] B. H. Brown, H. L. Duthie, A. R. Horn, and R. H. Smallwood, “A Linked Oscillator Model of Electrical Activity of Human Small Intestine,” Am. J. Physiol., Vol.229, No.2, pp. 384-388, Aug. 1975.
  16. [16] B. Robertson-Dunn and D. A. Linkens, “A Mathematical Model of the Slow-wave Electrical Activity of the Human Small Intestine,” Med. Biol. Eng., Vol.12, No.6, pp. 750-758, Nov. 1974.
  17. [17] N. E. Diamant and A. Bortoff, “Nature of the Intestinal Slow-wave Frequency Gradient,” Am. J. Physiol., Vol.216, No.2, pp. 301-307, Feb. 1969.
  18. [18] W. A. Weems, “The Intestine as a Fluid Propelling System,” Annu. Rev. Physiol., Vol.43, pp. 9-19, Mar. 1981.
  19. [19] M. L. Buist, A. Corrias, and Y. C. Poh, “A Model of Slow Wave Propagation and Entrainment along the Stomach,” Ann. of Biomed. Eng., Vol.38, No.9, pp. 3022-3030, Sep. 2010.
  20. [20] J. D. Chambers, J. C. Bornstein, and E. A. Thomas, “Multiple Neural Oscillators and Muscle Feedback Are Required for the Intestinal Fed State Motor Program,” PLoS One, Vol.6, No.5, e19597, May 2011.
  21. [21] P. Du, G. O’Grady, S. J. Gibbons, R. Yassi, R. Lees-Green, G. Farrugia, L. K. Cheng, and A. J. Pullan, “Tissue-Specific Mathematical Models of Slow Wave Entrainment in Wild-Type and 5-HT2B Knock-out Mice with Altered Interstitial Cells of Cajal Networks,” Biophys. J., Vol.98, No.9, pp. 1772-1781, May 2010.
  22. [22] J. D. Huizinga and W. J. E. P. Lammers, “Gut Peristalsis is Governed by a Multitude of Cooperating Mechanisms,” Am. J. Physiol. Gastrointest. Liver Physiol., Vol.296, No.1, G1-G8, Jan. 2009.
  23. [23] T. Nakamura and K. Suzuki, “Development of a Peristaltic Pump Based on Bowel Peristalsis Using Artificial Rubber Muscle,” Adv. Robotics, Vol.25, No.3-4, pp. 371-385, Apr. 2011.
  24. [24] K. Suzuki and T. Nakamura, “Development of a Peristaltic Pump Based on Bowel Peristalsis Using for Artificial Rubber Muscle,” in Proc. of the 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3085-3090, 2010.
  25. [25] J. E. Jones, “On the Determination of Molecular Fields II: From the Equation of State of a Gas,” Proc. R. Soc. Lond. A, Vol.106, No.738, pp. 463-477, Oct. 1924.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 05, 2024