Paper:
Development of Bellows-Type Artificial Rubber Muscle and Application to Peristaltic Crawling Endoscopic Robot
Takaichi Yanagida, Kazunori Adachi, and Taro Nakamura
Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- [1] A. Jemal, F. Bray, M. Melissa, J. Ferlay E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin., Vol.61, pp. 69-90, 2011.
- [2] Foundation for Promotion of Center Research, “Statistics of cancer in 2007,” 2007.
- [3] N. Saga and T. Nakamura, “Elucidation of propulsive force of micro-robot using magnetic fluid,” J. of Applied Physics, Vol.91, No.10, parts 2 and 3, pp. 7003-7005, 2002.
- [4] N. Saga and T. Nakamura, “A prototype of peristaltic robot using pneumatic artificial muscle,” Intelligent automation system, No.8, pp. 85-95, 2004.
- [5] N. Saga and T. Nakamura, “Development of peristaltic-crawling robot using magnetic fluid on the basis of locomotion mechanism of earthworm,” Smart Material and Structure, Vol.13, No.3, pp. 85-95, 2004.
- [6] T. Nakamura, T. Kato, T. Iwanaga, and Y. Muranaka, “Development of a peristaltic crawling robot using servomotors based on the locomotion mechanism of earthworms,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 4342-4344, 2006.
- [7] T. Nakamura, T. Kato, T. Iwanaga, and Y. Muranaka, “Development of a Peristaltic Crawling Robot Based on Earthworm Locomotion,” J. of Robotics and Mechatronics, Vol.18, No.3, pp. 299-304, 2006.
- [8] Y. Hidaka, M. Yokojima, and T. Nakamura, “Peristaltic Crawling Robot with Artificial Rubber Muscles Attached to Large Intestine Endoscope,” Proc. of 1st Int. Conf. on Applied Bionics and Biomechanics (ICABB 2010), October 2010.
- [9] E. V. Mangan, D. A. Kingsley, R. D. Quinn, and H. J. Chiel, “Development of a Peristaltic Endoscope,” Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA 2002), pp. 347-352, 2002.
- [10] G. Yan and K. Wang, “A Wireless Robot for Gastrointestine,” Proc. of IEEE Trans. on Robotic, Vol.24, No.1, pp. 206-210, February 2008.
- [11] A. B. Slatkin, J. Burdick, and W. Grundfest, “The Development of a Robotic Endoscope,” Proc. of IEEE Int. Conf. on Intelligent Robot and Systems (IROS 1995), pp. 162-171, 1995.
- [12] M. Shinkai, N. Murai, K. Itoh, H. Ishii, A. Takanishi, K. Tanoue, S. Ieiri, K. Konishi, and M. Hasizume, “Development of a robotic endoscope that locomotes in the colon with flexible helical fins,” 31st Annual Int. Conf. of the IEEE EMBS, pp. 5126-5129, September 2009.
- [13] S.Wakimoto and K. Suzumori, “Fabrication and Basic Experiments of Pneumatic Multi-chamber Rubber Tube Actuator for Assisting Colonoscope Insertion,” Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA 2010), pp. 3260-3265, May 2010.
- [14] P. Valdastri, R. J.Webster, III, C. Quaglia, M. Quirini, A.Menciassi, and P. Dario, “A New Mechanism for Mesoscale Legged Locomotion in Compliant Tubular Environments,” IEEE Trans. on Robotics, Vol.25, No.5, pp. 1047-1057, October 2009.
- [15] H. Yamamoto, Y. Sekine, Y. Sato, T. Higashizawa, T. Miyata, S. Iino, K. Ido, and K. Sugano, “Total Enteroscopy with a Nonsurgical Steerable Double- Balloon Method,” Gastrointestinal Endoscopy, Vol.53, No.2, pp. 216-220, 2001.
- [16] Y. Ueda, “Micromachine: Possibility of Capsule Endoscope and Pancreatic Endoscope,” Clinical digestive tract internal medicine, Vol.12, No.7, pp. 1059-1064, 1997.
- [17] H. Sugi, “Evolution of muscle motion,” The University of Tokyo Press, p. 72, 1977 (in Japanese).
- [18] T. Nakamura and H. Shinohara, “Position and Force Control Based on Mathematical Models of Pneumatic Artificial Muscles Reinforced by Straight Glass Fibers,” Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA 2007), pp. 4361-4366, 2007.
- [19] T. Nakamura, N. Saga, and K. Yaegashi, “Development of Pneumatic Artificial Muscle Based on Biomechanical Characteristics,” Proc. of IEEE Int. Conf. on Industrial Technology (ICIT 2003), pp. 729-734, 2003.
- [20] K. Adachi, M. Yokojima, Y. Hidaka, and T. Nakamura, “Development of endoscopic robot and experiment in the large intestine of dead swine,” 2011 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), pp. 467-472, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.