JRM Vol.25 No.4 pp. 650-656
doi: 10.20965/jrm.2013.p0650


Line Patterning with Microparticles at Different Positions in a Single Device Based on Negative Dielectrophoresis

Tomoyuki Yasukawa, Yusuke Yoshida, Hironobu Hatanaka,
and Fumio Mizutani

Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan

February 1, 2013
May 28, 2013
August 20, 2013
negative-dielectrophoresis, particle patterning, desired position, reversible switching

We report on control of line pattern positioning with particles fabricated by negative dielectrophoresis (n-DEP) using the applied intensity and phase of an AC electric field. Line patterns were fabricated in a microfluidic device consisting of upper conductive indium-tin-oxide (ITO) substrates and lower ITOinterdigitated microband array (IDA) electrodes used as the template. A 6-µm-diameter polystyrene particles suspension was introduced into the device between upper ITO and the bottom ITO-IDA substrate. An AC electric signal of a typically 20 peak-to-peak voltage and 1.0 MHz was then applied to upper ITO and bands on lower IDA, resulting in the formation of line patterns with low electric-field gradient regions. AC voltage was applied to bands A and B on lower IDA with the opposite phase and the same frequency and intensity. When the signal identical to band A was applied to upper ITO, particles were aligned above band A because relatively lower electric fields were produced in these regions. In contrast, the application of a signal identical to band B formed line patterns with particles aligned above band B due to the generation of a strong electric field between band A and upper ITO and the disappearance of the strong electric field between band B and upper ITO. The decrease in applied intensity to upper ITO shifted the accumulated position of particles to the center between bands A and B because of the balance of electric fields generated between band A or B and upper ITO. We thus fabricated line patterns with particles at desired positions in the fluidic device.

Cite this article as:
Tomoyuki Yasukawa, Yusuke Yoshida, Hironobu Hatanaka, and
and Fumio Mizutani, “Line Patterning with Microparticles at Different Positions in a Single Device Based on Negative Dielectrophoresis,” J. Robot. Mechatron., Vol.25, No.4, pp. 650-656, 2013.
Data files:
  1. [1] Y. Xia, E. Kim, X.M. Zhao, J. A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science, Vol.273, pp. 347-349, 1996.
  2. [2] J. M. Weissan, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science, Vol.274, pp. 959-960, 1996.
  3. [3] A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a Biomarker for Alzheimer’s Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor,” J. Am. Chem. Soc., Vol.127, pp. 2264-2271, 2005.
  4. [4] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature, Vol.361, No.26, 1993.
  5. [5] C. A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces,” Langmuir, Vol.20, pp. 9114-9123, 2004.
  6. [6] F. Juillerat, H. H. Solak, P. Bowen, and H. Hofmann, “Fabrication of large-area ordered arrays of nanoparticles on patterned substrates,” Nanotechnology, Vol.16, pp. 1311-1316, 2005.
  7. [7] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. Chmelka, G. M. Whitesides, and G. D. Stucky, “Hierarchically ordered oxides,” Science, Vol.282, pp. 2244-2246, 1998.
  8. [8] H. Miguez, S. M. Yang, and G. A. Ozin, “Optical properties of colloidal photonic crystals confined in rectangular microchannels,” Langmuir, Vol.19, pp. 3479-3485, 2003.
  9. [9] C. Y. Jiang, S. Markutsya, and V. V. Tsukruk, “Compliant, robust, and truly nanoscale free-standing multilayer films fabricated using spin-assisted layer-by-layer assembly,” Adv. Mater., Vol.16, pp. 157-161, 2004.
  10. [10] O. V. Salata, P. J. Dobson, P. J. Hull, and J. L. Hutchison, “Fabrication of PbS nanoparticles embedded in a polymer Film by a gasaerosol reactive electrostatic deposition technique,” Adv. Mater., Vol.6, pp. 772-775, 1994.
  11. [11] Y. Lvov, K. Ariga,M. Onda, I. Ichinose, and T. Kunitake, “Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions,” Langmuir, Vol.13, pp. 6195-6203, 1997.
  12. [12] T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Mullen, and A. Yasuda, “Gold nanoparticle/polyphenylene dendrimer composite films: Preparation and vapor-sensing properties,” Adv. Mater., Vol.14, pp. 238-242, 2002.
  13. [13] H. P. Zheng, M. F. Rubner, and P. T. Hammond, “Particle assembly on patterned “plus/minus” polyelectrolyte surfaces via polymer-onpolymer stamping,” Langmuir, Vol.18, pp. 4505-4510, 2002.
  14. [14] U. Jonas, A. Campo, C. Kruger, G. Glasser, and D. Boos, “Colloidal assemblies on patterned silane layers,” Proc. Natl. Acad. Sci. USA, Vol.99, pp. 5034-5039, 2002.
  15. [15] Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly and micropatterning of spherical-particle assemblies,” Adv.Mater., 2005, Vol.17, pp. 841-845.
  16. [16] O. Crespo-Biel, B. Dordi, D. N. Reinhoudt, and J. Huskens, “Supramolecular layer-by-layer assembly: Alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions,” J. Am. Chem. Soc., Vol.127, pp. 7594-7600, 2005.
  17. [17] M. Wanunu, R. Popovitz-Biro, H. Cohen, A. Vaskevich, and I. Rubinstein, “Coordination-based gold nanoparticle layers,” J. Am. Chem. Soc., Vol.127, pp. 9207-9215, 2005.
  18. [18] M. Suzuki, T. Yasukawa, Y. Mase, D. Oyamatsu, H. Shiku, and T. Matsue, “Dielectrophoretic micropatterning with microparticle monolayers covalently linked to glass surfaces,” Langmuir, Vol.20, pp. 11005-11011, 2004.
  19. [19] M. Suzuki, T. Yasukawa, H. Shiku, and T. Matsue, “Negative dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel,” Langmuir, Vol.23, pp. 4088-4094, 2007.
  20. [20] H. J. Lee, T. Yasukawa, M. Suzuki, Y. Taki, A. Tanaka, M. Kameyama, H. Shiku, and T. Matsue, “Rapid fabrication of nanoparticles array on polycarbonate membrane based on positive dielectrophoresis,” Sensors and Actuators B: Chemical, Vol.131, pp. 424-431, 2008.
  21. [21] H. J. Lee, T. Yasukawa, M. Suzuki, S. H. Lee, T. Yao, Y. Taki, A. Tanaka, M. Kameyama, H. Shiku, and T.Matsue, “Simple and rapid preparation of vertically aligned gold nanoparticle arrays and fused nanorods in pores of alumina membrane based on positive dielectrophoresis,” Sensors and Actuators B: Chemical, Vol.136, pp. 320-325, 2009.
  22. [22] K. Ino, H. Shiku, F. Ozawa, T. Yasukawa, and T. Matsue, “Manipulation of microparticles for construction of array patterns by negative dielectrophoresis using multilayered array and grid electrodes,” Biotechnology and Bioengineering, Vol.104, pp. 709-718, 2009.
  23. [23] M. Suzuki, T. Yasukawa, H. Shiku, and T. Matsue, “Negative dielectrophoretic patterning with different cell types,” Biosens. Bioelectron., Vol.24, pp. 1043-1047, 2008.
  24. [24] T. Murata, T. Yasukawa, H. Shiku, and T. Matsue, “Electrochemical single-cell gene expression assay combining dielectrophoretic manipulation with secreted alkaline phosphatase reporter system,” Biosens. Bioelectron., Vol.25, pp. 913-919, 2009.
  25. [25] T. Yasukawa, M. Suzuki, H. Shiku, and T. Matsue, “Fabrication of line and grid patterns with cells based on negative dielectrophoresis,” J. of Robotics and Mechatronics, Vol.22, pp. 613-618, 2010.
  26. [26] H. J. Lee, T. Yasukawa, H. Shiku, and T. Matsue, “Rapid and separation-free sandwich immunosensing based on accumulation of microbeads by negative dielectrophoresis,” Biosens. Bioelectron., Vol.24, pp. 1000-1005, 2008.
  27. [27] H. J. Lee, S. H. Lee, T. Yasukawa, J. Ramón-Azcón, F. Mizutani, K. Ino, H. Shiku, and T. Matsue, “Rapid and simple immunosensing system for simultaneous detection of tumor markers based on negative-dielectrophoretic manipulation of microparticles,” Talanta, Vol.81, pp. 657-663, 2010.
  28. [28] J. Ramón-Azcón, T. Yasukawa, H. J. Lee, T. Matsue, F. Sánchez-Baeza, M.-P. Marco, and F. Mizutani, “Competitive multiimmunosensing of pesticides based on the particle manipulation with negative dielectrophoresis,” Biosens. Bioelectron., Vol.25, pp. 1928-1933, 2010.
  29. [29] J. Ramón-Azcón, T. Yasukawa, and F. Mizutani, “Sensitive and spatially multiplexed detection system based on dielectrophoretic manipulation of DNA encoded particles used as immunoreactions platform,” Anal. Chem., Vol.83, pp. 1053-1060, 2011.
  30. [30] J. Ramón-Azcón, T. Yasukawa, and F. Mizutani, “Immunodevice for simultaneous detection of two relevant tumor markers based on separation of different microparticles by dielectrophoresis,” Biosensors and Bioelectronics, Vol.28, pp. 443-449, 2011.
  31. [31] M. Yamamoto, T. Yasukawa, M. Suzuki, S. Kosuge, H. Shiku, T. Matsue, and F. Mizutani, “Patterning with particles using threedimensional interdigitated array electrodes with negative dielectrophoresis and its application to simple immunosensing,” Electrochim. Acta, Vol.82, pp. 35-42, 2012.
  32. [32] H. Hatanaka, T. Yasukawa, and F. Mizutani, “Detection of surface antigens on living cells through incorporation of immunorecognition into the distinct positioning of cells with positive and negative dielectrophoresis,” Anal. Chem., Vol.83, pp. 7207-7212, 2011.
  33. [33] T. Yasukawa, H. Hatanaka, and F. Mizutani, “Simple detection of surface antigens on living cells by applying distinct cell positioning with negative dielectrophoresis,” Anal. Chem., Vol.84, pp. 8830-8836, 2012.
  34. [34] H. A. Pohl, “Dielectrophoresis,” Cambridge University Press: Cambridge, UK, 1978.
  35. [35] T. B. Jones, “Electromechanics of Particles,” Cambridge University Press: New York, 1995.
  36. [36] H. Morgan and N. G. Green, “AC Electrokinetics: Colloids and Nanoparticles,” Research Studies Press: Baldock, Hertfordshire, England, 2003.
  37. [37] W. M. Arnold, H. P. Schwan, and U. Zimmermann, “Surface conductance and other properties of latex particles measured by electrorotation,” J. Phys. Chem., Vol.91, pp. 5093-5098, 1987.
  38. [38] M. P. Hughes, H. Morgan, and M. F. Flynn, “The dielectrophoretic behavior of submicron latex spheres: Influence of surface conductance,” J. Colloid Interface Sci., Vol.220, pp. 454-457, 1999.
  39. [39] L. Cui, D. Holmes, and H. Morgan, “The dielectrophoretic levitation and separation of latex beads in microchips,” Electrophoresis, Vol.22, pp. 3893-3901, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Feb. 25, 2021