JRM Vol.25 No.2 pp. 277-284
doi: 10.20965/jrm.2013.p0277


Cellular Force Measurement Using a Nanometric-Probe-Integrated Microfluidic Chip with a Displacement Reduction Mechanism

Shinya Sakuma and Fumihito Arai

Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

November 8, 2012
November 20, 2012
April 20, 2013
microrobot, magnetic actuator, microfluidic chip, cellular force measurement, oocyte

This paper presents noncontact nanometric positioning of a probe tip with high output force in a microfluidic chip. To measure cellular force in a microfluidic chip on the basis of cell deformation, we employed an on-chip probe with a magnetic drive method with actuation on the order of millinewtons. A reduction mechanism was proposed to realize nanometric resolution for positioning the probe tip. This mechanism utilizes a combination of springs with different stiffness levels and is driven bymagnetic force. The performance of the prototype device was examined and results indicated that, as ameasure of repetitive positioning accuracy, standard deviation of probe tip displacement was under 0.18 µm. Deformation was successfully measured for an oocyte on the order of 0.1 mN, demonstrating, as a consequence, nanometric order noncontact actuation of the on-chip probe with high output force. Using this on-chip probe, cellular force measurement was achieved for the microfluidic chip.

Cite this article as:
Shinya Sakuma and Fumihito Arai, “Cellular Force Measurement Using a Nanometric-Probe-Integrated Microfluidic Chip with a Displacement Reduction Mechanism,” J. Robot. Mechatron., Vol.25, No.2, pp. 277-284, 2013.
Data files:
  1. [1] M. E. Fauver, D. L. Dunaway, D. H. Lilienfeld, H. G. Craighead, and G. H. Pollack, “Microfabricated cantilevers for measurement of subcellular and molecular forces,” IEEE Trans. on Biomedical Engineering, Vol.45, No.7, pp. 891-898, 1998.
  2. [2] B. Wacogne, C. Pieralli, C. Roux, and T. Gharbi, “Measuring the mechanical behaviour of human oocytes with a very simple SU-8 micro-tool,” Biomed Microdevices, Vol.10, pp. 411-419, 2008.
  3. [3] M. Nakajima, M. R. Ahmad, S. Kojima, M. Homma, and T. Fukuda, “Local stiffness measurements of C. elegans by buckling nanoprobes inside an environmental SEM,” Proc of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4695-4700, 2009.
  4. [4] M. Gauthier and E. Piat, “An electromagnetic micromanipulation system for single-cell manipulation,” J. of Micromechatronics, Vol.2, pp. 87-119, 2004.
  5. [5] T. Wakayama, A. C. F. Perry, M. Zuccotti, K. R. Johnson, and R. Yanagimachi, “Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei,” Nature, Vol.394, pp. 369-374, 1998.
  6. [6] Y. Murayama, C. E. Constantinou, and S. Omata, “Micromechanical sensing platform for the characterization of the elastic properties of the ovum via uniaxial measurement,” J. Biomechanics, Vol.37, pp. 67-72, 2004.
  7. [7] Y. Sun, K. T. Wan, K. P. Roberts, J. C. Bischof, and B. J. Nelson, “Mechanical property characterization of mouse zona pellucida,” IEEE Trans. on Nanobioscience, Vol.2, No.4, pp. 279-286, 2003.
  8. [8] G. Song, Y. Ju, H. Soyama, T. Ohashi, and M. Sat, “Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells,” MCB, Vol.090, No.1, pp. 1-10, 2008.
  9. [9] M. Papi, L. Sylla, T. Parasassi, R. Brunelli, M. Monaci, G. Maulucci, M. Missori, G. Arcovito, F. Ursini, and M. D. Spirito, “Evidence of elastic to plastic transition in the zona pellucida of oocytes using atomic force spectroscopy,” Applied Physics Letters, Vol.94, No.153902, pp. 1-3, 2009.
  10. [10] F. Arai, M. Ogawa, and T. Fukuda, “Selective manipulation of a microbe in a microchannel using a teleoperated laser scanning manipulator and dielectrophoresis,” Advanced Robotics, Vol.13, No.3, pp. 343-345, 1999.
  11. [11] K. Onda and F. Arai, “Multi-beam bilateral teleoperation of holographic optical tweezers accelerated by general-purpose GPU,” Optics Express, Vol.20, Issue 4, pp. 3642-3653, 2012.
  12. [12] C. X.Wang, L.Wang, S. J. McQueen-Mason, J. Pritchard, and C. R. Thomas, “pH and expansion action on single suspension-cultured tomato (Lycopersicon esculentum) cells,” J. Plant. Res., Vol.121, pp. 527-534, 2008.
  13. [13] G. A. Mensing, T. M. Pearce, M. D. Graham, and D. J. Beebe, “An externally driven magnetic microstirrer,” Philos. Trans. Roy. Soc. London A, Math. Phys. Eng. Sci., Vol.362, No.1818, pp. 1059-1068, 2004.
  14. [14] K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C. Liu, “Micro magnetic stir-bar mixer integrated with parylene microfluidic channels,” Lab Chip, Vol.4, No.6, pp. 608-613, Dec. 2004.
  15. [15] W. C. Jackson, H. D. Tran, M. J. O’Brien, E. Rabinovich, and G. P. Lopez, “Rapid prototyping of active microfluidic components based on magnetically modified elastomeric materials,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct., Vol.19, No.2, pp. 596-599, 2001.
  16. [16] M. Barbic, J. J. Mock, A. P. Gray, and S. Schultz, “Electromagnetic micromotor for microfluidics applications,” Appl. Phys. Lett., Vol.79, No.9, pp. 1399-1401, 2001.
  17. [17] Y. Yamanishi, S. Sakuma, K. Onda, and F. Arai, “Powerful actuation of magnetized microtools by focused magnetic field for particle sorting in a chip,” Biomed Microdevices, Vol.10, pp. 411-419, 2008.
  18. [18] J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How Should Microrobots Swim?,” Int. J. Rob. Res., Vol.28, pp. 1434-1447, 2009.
  19. [19] J. Atencia and D. J. Beebe, “Magnetically-driven biomimetic micro pumping using vortices,” Lab Chip, Vol.4, No.6, pp. 598-602.
  20. [20] A.-L. Gassner, M. Abonnenc, H.-X. Chen, J. Morandini, J. Josserand, J. S. Rossier, J.-M. Busnel, and H. H. Girault, “Magnetic forces produced by rectangular permanent magnets in static microsystems,” Lab Chip, Vol.9, No.16, pp. 2356-2363, 2009.
  21. [21] Y. Yamanishi, S. Sakuma, K. Onda, and F. Arai, “Biocompatible polymeric magnetically driven microtool for particle sorting,” J. Micro-Nano Mechatron., Vol.4, No.1/2, pp. 49-57, Nov. 2008.
  22. [22] Y. Yamanishi, S. Sakuma, Y. Kihara, and F. Arai, “Fabrication and Application of 3D Magnetically Driven Microtools,” J. Microelectromechanical Systems, Vol.19, No.2, pp. 350-357, 2010.
  23. [23] M. Roper, R. Dreyfus, J. Baudry, M. Fermigier, J. Bibette, and H. A. Stone, “On the dynamics of magnetically driven elastic filaments,” J. Fluid Mech., Vol.554, pp. 167-190, 2006.
  24. [24] L. Zhang, K. E. Peyer, and B. J. Nelson, “Artificial Bacterial Flagella for Micromanipulation,” Lab Chip, Vol.10, pp. 2203-2215, 2010.
  25. [25] N. Inomata, T. Mizunuma, Y. Yamanishi, and F. Arai, “Omnidirectional actuation of magnetically driven microtool for cutting of oocyte in a chip,” J.Micro electromechanical systems, Vol.20, No.2, pp. 383-388, 2011.
  26. [26] M. Hagiwara, T. Kawahara, Y. Yamanishi, and F. Arai, “Driving method of microtool by horizontally arranged permanent magnets for single cell manipulation,” Applied Physics Letters, Vol.97, No.013701, pp. 1-3, 2010.
  27. [27] M. Hagiwara, T. Kawahara, Y. Yamanishi, T. Masuda, L. Feng, and F. Arai, “On-Chip magnetically actuated robot with ultrasonic vibration for single cell manipulations,” Lab on a chip, Vol.11, pp. 2049-2054, 2011.
  28. [28] M. Hagiwara, T. Kawahara, Y. Yamanishi, and F. Arai, “Precise Control of Magnetically Driven Microtools for Enucleation of Oocytes in a Microfluidic Chip,” Advanced Robotics, Vol.25, No.8, pp. 991-1005, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021