Paper:
Visual Localization for Mobile Robots Based on Composite Map
Hung-Hsiu Yu*, Hsiang-Wen Hsieh*, Yu-Kuen Tasi*,
Zhi-Hung Ou**, Yea-Shuan Huang**, and Toshio Fukuda***
*Intelligent Robotics Division, Mechanical and System Laboratory, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 310, Taiwan
**Department of Computer Science and Information Engineering, Chung-Hua University, 707, Sec. 2, WuFu Rd., Hsinchu 30012, Taiwan
***Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- [1] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics,” MIT Press, 2005.
- [2] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “Position Estimation for Mobile Robots in Dynamic Environments,” Proc. of the National Conf. on Artificial Intelligence, 1998.
- [3] W. Burgard, D. Fox, D. Hennig, and T. Schmidt, “Position tracking with position probability grids,” Proc. of the First Euromicro Workshop on Advanced Mobile Robot, pp. 2-9, 1996.
- [4] T. Ogino, M. Tomono, T. Akimoto, and A. Matsumoto, “Human Following by an Omnidirectional Mobile Robot Using Maps Built from Laser Range-Finder Measurement,” J. of Robotics andMechatronics, Vol.22. No.1, pp. 28-35, 2010.
- [5] C. Rohrig, D. Hess, C. Kirsch, and F. Kunemund, “Localization of an omnidirectional transport robot using IEEE 802.15.4a ranging and laser range finder,” Int. Conf. on Intelligent Robots and Systems, pp. 3798-3803, 2010.
- [6] H. Yoshitaka, K. Hirohiko, O. Akihisa, and Y. Shin’ichi, “Mobile Robot Localization and Mapping by Scan Matching using Laser Reflection Intensity of the SOKUIKI Sensor,” Conf. on IEEE Industrial Electronics, pp. 3018-3023, 2006.
- [7] X. Zhou, Y. K. Ho, C. S. Chua, and Y. Zou, “The localization of mobile robot based on laser scanner,” Conf. on Electrical and Computer Engineering, Vol.2, pp. 841-845, 2000.
- [8] I. Nagai and Y. Tanaka, “Mobile Robot with Floor Tracking Device for Localization and Control,” J. of Robotics and Mechatronics, Vol.19, No.1, pp. 34-41, 2007.
- [9] H. Yaguchi, N. Zaoputra, N. Hatao, K. Yamazaki, K. Okada, and M. Inaba, “View-Based Localization Using Head-Mounted Multi Sensors Information,” J. of Robotics and Mechatronics, Vol.21, No.3, pp. 376-383, 2009.
- [10] E. L. Akers and A. Agah, “Topological Localization Using Appearance-Based Recognition,” J. of Automation Mobile Robotics Intelligent Systems, Vol.41, pp. 68-84, 2010.
- [11] A. J. Davison and D. W. Murray, “Simultaneous localization and map-building using active vision,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.24, No.7, pp. 865-880, 2002.
- [12] J. Diebel, K. Reutersward, S. Thrun, J. Davis, and R. Gupta, “Simultaneous localization and mapping with active stereo vision,” Int. Conf. on Intelligent Robots and Systems IROS IEEE, Vol.4, pp. 3436-3443, 2004.
- [13] J. Porta, J. Verbeek, and B. Krose, “Active appearance-based robot localization using stereo vision,” Autonomous Robots, Vol.18, No.1, pp. 59-80, 2005.
- [14] A. Davison, I. Reid, N.Molton, and O. Stasse, “MonoSLAM: Real-Time Single Camera SLAM,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.29, No.6, pp. 1052-1067, 2007.
- [15] C.-H. Chen and Y.-P. Chan, “SIFT-based monocular SLAM with inverse depth parameterization for robot localization,” IEEE Workshop on Advanced Robotics and Its Social Impacts, pp. 1-6, 2007.
- [16] S. Se, D. Lowe, and J. Little, “Vision-based mobile robot localization and mapping using scale-invariant features,” Proc. of IEEE Int. Conf. on Robotics and Automation, Vol.2, pp. 2051-2058, 2001.
- [17] A. Georgiev and P. Allen, “Vision for mobile robot localization in urban environments,” Int. Conf. on Intelligent Robots and Systems, Vol.1, pp. 472-477, 2002.
- [18] B. Ristic, S. Arulampalam, and N. Gordon, “Beyond the Kalman filter: particle filters for tracking applications,” Artech House, 2004.
- [19] M. Nicoli, C. Morelli, and V. Rampa, “A Jump Markov Particle Filter for Localization of Moving Terminals in Multipath Indoor Scenarios,” IEEE Trans. on Signal Processing, Vol.56, No.8, pp. 3801-3809, 2008.
- [20] M. Yokozuka, Y. Suzuki, T. Takei, N. Hashimoto, and O. Matsumoto, “Auxiliary Particle Filter Localization for Intelligent Wheelchair Systems in Urban Environments,” J. of Robotics and Mechatronics, Vol.22, No.6, pp. 758-766, 2010.
- [21] A. Sakai, T. Saitoh, and Y. Kuroda, “Robust Landmark Estimation and Unscented Particle Sampling for SLAM in Dynamic Outdoor Environment,” J. of Robotics and Mechatronics, Vol.22, No.2, pp. 140-149, 2010.
- [22] C. Harris and M. Stephens, “A Combined Corner and Edge Detection,” Proc. of The Fourth Alvey Vision Conf., pp. 147-151, 1988.
- [23] Y. Han, J. Yin, and J. Li, “Human Face Feature Extraction and Recognition Base on SIFT,” Int. Symposium on Computer Science and Computational Technology, Vol.1, pp. 719-722, 2008.
- [24] S. M. Smith and J. M. Brady, “SUSAN – A New Approach to Low Level Image Processing,” Int. J. of Computer Vision, Vol.23, pp. 45-78, 1995.
- [25] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” European Conf. on Computer Vision, pp. 430-443, 2006.
- [26] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, Vol.1, pp. 81-106, 1986.
- [27] S. Aoyagi, N. Hattori, A. Kohama, S. Komai, M. Suzuki, M. Takano, and E. Fukui, “Object Detection and Recognition Using Template Matching with SIFT Features Assisted by Invisible Floor Marks,” J. of Robotics and Mechatronics, Vol.21, No.6, pp. 689-697, 2009.
- [28] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-Up Robust Features (SURF),” Computer Vision and Image Understanding, Vol.110, No.3, pp. 346-359, 2008.
- [29] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations,” Proc. of the Seventh IEEE Int. Conf. on Computer Vision, Vol.1, pp. 666-673, 1999.
- [30] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder (improves camera calibration),” Proc. of Int. Conf. on Intelligent Robots and Systems, Vol.3, pp. 2301-2306, 2004.
- [31] T. Ojala, M. Pietikainen, and D. Harwood, “A comparative study of texture measures with classification based on featured distributions,” Pattern Recognition, Vol.29, No.1, pp. 51-59, 1996.
- [32] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.24, No.7, pp. 971-987, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.