JRM Vol.25 No.1 pp. 16-24
doi: 10.20965/jrm.2013.p0016


A Bio-Inspired Robot Using Electro-Conjugate Fluid

Kenichiro Tokida*1, Akihiro Yamaguchi*1, Kenjiro Takemura*2,
Shinichi Yokota*3, and Kazuya Edamura*4

*1Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kouhoku-ku, Yokohama, Japan

*2Department of Mechanical Engineering, Keio University, Japan

*3Precision and Intelligence Laboratory, Tokyo Institute of Technology, R2-41, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan

*4New Technology Management Co., Ltd., 2-9-1-306 Higashi-shinkoiwa, Katsushika-ku, Tokyo 124-0023, Japan

January 12, 2012
March 2, 2012
February 20, 2013
functional fluid, electro-conjugate fluid, soft actuator, bio-inspired robot

Electro-Conjugate Fluid (ECF) is a kind of functional fluid that produces a jet flow (ECF jet) when subjected to high DC voltage. A strong ECF jet is known to be generated in a nonuniform electric field, for example, a field with a pair of needle and ring electrodes. This study introduces the ECF jet in developing a novel bio-inspired robot. We first propose the concept of a robot driven by an ECF jet. The robot is mainly composed of ECF jet generators (a micro fluid pressure source), fiber-reinforced rubber actuators, a built-in spring actuator, and an ECF tank. We next investigate the characteristics of the ECF jet generator, the fiberreinforced rubber actuator, and the built-in spring actuator. As a result, we confirmed that the maximum pressure and flow rate of the ECF jet generator are 32.0 kPa and 27.0 ml/min, respectively, and that the actuators could be driven by the ECF jet. We then developed a bio-inspired robot and demonstrated that the robot could move in a 14 mm diameter acrylic half pipe with 0.6 mm/s, and in a 14 mm diameter acrylic pipe with 0.5 mm/s. The robot is 300 mm long with a mass of 26 g.

Cite this article as:
Kenichiro Tokida, Akihiro Yamaguchi, Kenjiro Takemura,
Shinichi Yokota, and Kazuya Edamura, “A Bio-Inspired Robot Using Electro-Conjugate Fluid,” J. Robot. Mechatron., Vol.25, No.1, pp. 16-24, 2013.
Data files:
  1. [1] N. Saga, T. Naksmura, and S. Ueda, “Study on Peristaltic Crawling Robot Using Artificial Muscle Actuator,” Proc. of the 2003 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 679-684, 2003.
  2. [2] T. Idogaki, H. Kanayama, N. Ohya, H. Suzuki, and T. Hattori, “Characteristics of Piezoelectric Locomotive Mechanism for an In-Pipe Micro Inspection Machine,” Sixth Int. Symposium on Micro Machine and Human Science, pp. 193-198, 1995.
  3. [3] Y. P. Lee, B. Kim, M. G. Lee, and J.-O. Park, “Locomotive Mechanism Design and Fabrication of Biomimetic Micro Robot Using Shape Memory Alloy,” Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 5007-5012, 2004.
  4. [4] T. Aoki and S. Hirose, “Development of Slime Robot Using Bridle Bellows,” J. of Robotics and Mechatronics, Vol.16, No.3, pp. 286-292, 2004.
  5. [5] K. Yoshida, K. Takahashi, and S. Yokota, “In-pipe Mobile Micromachine Using Fluid Power Adaptable to Pipe Diameters,” J. of Robotics and Mechatronics, Vol.11, No.5, pp. 417-422, 1999.
  6. [6] S. Wakimoto, J. Nakajima, M. Tanaka, T. Kanda, and K. Suzumori, “A micro snake-like robot for small pipe inspection,” Int. Symposium on Micromechatronics and Human Science, pp. 303-308, 2003.
  7. [7] C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni, M. Gonzalez-Rivero, R. Hatton, and H. Choset, “Design of a Modular Snake Robot,” Proc. of the 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2609-2614, 2007.
  8. [8] S. Sugita, K. Ogami, G.Michele, S. Hirose, and K. Takita, “A Study on the Mechanism and Locomotion Strategy for New Snake-Like Robot Active Cord Mechanism – Slime model 1 ACM-S1,” J. of Robotics and Mechatronics, Vol.20, No.2, pp. 302-310, 2008.
  9. [9] P. Liljeback, O. Stavdahl, and K. Y. Pettersen, “Modular Pneumatic snake robot 3D modeling, implementation and control,” Modeling, Identification and Control, Vol.29, No.1, pp. 21-28, 2008
  10. [10] J. Lim, H. Park, and S. M. B. Kim, “Pneumatic Robot Based on Inchworm Motion for Small Diameter Pipe Inspection,” Proc. of the 2007 IEEE Int. Conf. on Robotics and Biomimetics, pp. 330-335, 2007.
  11. [11] Y. Nakazato, Y. Sonobe, and S. Toyama, “Development of an Inpipe micro mobile robot using peristalsis motion,” J. of Mechanical Science and Technology, Vol.24, pp. 51-54, 2010.
  12. [12] B. Tondu and P. Lopez, “Modeling and Control of McKibben Artificial Muscle Robot Actuators,” IEEE Control Systems Magazine, Vol.20, Issue 2, pp. 15-38, 2000.
  13. [13] K.-H. Yoon and Y.-W. Park, “Pipe Inspection Robot Actuated by Using Compressed Air,” Proc. of the 2010 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 1345-1349, 2010.
  14. [14] D. Glozman, N. Hassidov, M. Senesh, and M. Shoham, “A Self-Propelled Inflatable Earthworm-Like Endoscope Actuated by Single Supply Line,” IEEE Trans. on Biomedical Engineering, Vol.57, No.6, pp. 1264-1272, 2010.
  15. [15] M. Ono, T. Hamano, and S. Kato, “Modeling and Fabrication of a Mobile Inspection Microrobot Driven by a Pneumatic Bellows Actuator for Long Pipes,” J. of Robotics and Mechatronics, Vol.18, No.1, pp. 11-17, 2006.
  16. [16] M. Ono, M. Otsuki, and S. Kato, “A Study of an In-PipeMicrorobot Having Bulging Friction Brakes,” J. of Robotics and Mechatronics, Vol.17, No.3, pp. 255-261, 2005.
  17. [17] B. Kim, M. G. Lee, Y. P. Lee, Y. Kim, and G. Lee, “An earthwormlike micro robot using shape memory alloy actuator,” Sensors and Actuators A: Physical, Vol.125, pp. 429-437, 2006.
  18. [18] A. Menciassi, S. Gorini, G. Pernorio, and P. Dario, “A SMA Actuated Artificial Earthworm,” Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 3282-3287, 2004.
  19. [19] J.-S. Koh and K.-J. Cho, “Omegabot: Crawling Robot Inspired by Ascotis Selenaria,” Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, pp. 109-114, 2010.
  20. [20] R. Abe, K. Takemura, S. Yokota, and K. Edamura, “Concept of a Micro Finger using Electro-conjugate Fluid and Fabrication of a Large Model Prototype,” Sensors and Actuators A: Physical, Vol.136, Issue 2, pp. 629-637, 2007.
  21. [21] K. Takemura, S. Yokota, and K. Edamura, “Development and control of a micro artificial muscle cell using electro-conjugate fluid,” Sensors and Actuators A: Physical, Vol.133, pp. 493-499, 2007.
  22. [22] H. Yamamoto, K. Mori, K. Takemura, L. Yeo, J. Friend, S. Yokota, and K. Edamura, “Numerical modeling of electro-conjugate fluid flows,” Sensors and Actuators A: Physical, Vol.161, pp. 152-157, 2010.
  23. [23] K. Mori, H. Yamamoto, K. Takemura, S. Yokota, and K. Edamura, “Dominant factors inducing electro-conjugate fluid flow,” Sensors and Actuators A: Physical, Vol.164, pp. 84-90, 2011.
  24. [24] K. Takemura, S. Yokota, M. Suzuki, K. Edamura, H. Kumagai, and T. Imamura, “A liquid rate gyroscope using electro-conjugate fluid,” Sensors and Actuators A: Physical, Vol.149, pp. 173-179, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021