Paper:
A Power Assist Device Based on Joint Equilibrium Point Estimation from EMG Signals
Toshihiro Kawase*, Hiroyuki Kambara*,**, and Yasuharu Koike*,**
*Tokyo Institute of Technology, R2-15, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
**JST CREST, 4-1-8 Honmachi, Kawaguchi-shi 332-0012, Japan
- [1] E. E. Cavallaro, J. Rosen, J. C. Perry, and S. Burns, “Real-TimeMyoprocessors for a Neural Controlled Powered Exoskeleton Arm,” IEEE Trans. on Biomedical Engineering, Vol.53, No.11, pp. 2387-2396, 2006.
- [2] C. Fleischer and G. Hommel, “A Human-Exoskeleton Interface Utilizing Electromyography,” IEEE Trans. on Robotics, Vol.24, No.4, pp. 872-882, 2008.
- [3] E. Guizzo and H. Goldstein, “The Rise of the Body Bots,” IEEE Spectrum, Vol.42, No.5, pp. 42-48, 2005.
- [4] T. Hayashi, H. Kawamoto, and Y. Sankai, “Control Method of Robot Suit HAL Working as Operator’s Muscle Using Biological and Dynamical Information,” In Proc. of 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2005), pp. 3063-3068, 2005.
- [5] H. Kazerooni and R. Steger, “The Berkeley Lower Extremity Exoskeleton,” ASME J. of Dynamic Systems, Measurement and Control, Vol.128, No.1, pp. 14-25, 2006.
- [6] K. Kiguchi, S. Kariya, K. Watanabe, K. Izumi, and T. Fukuda, “An Exoskeletal Robot for Human Elbow Motion Support – Sensor Fusion, Adaptation, and Control,” IEEE Trans. on Systems Man and Cybernetics Part B – Cybernetics, Vol.31, No.3, pp. 353-361, 2001.
- [7] K. Kiguchi, T. Tanaka, and T. Fukuda, “Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals,” IEEE Trans. on Fuzzy Systems, Vol.12, No.4, pp. 481-490, 2004.
- [8] J. Rosen, M. Brand, M. B. Fuchs, and M. Arcan, “A Myosignal-Based Powered Exoskeleton System,” IEEE Trans. on SystemsMan and Cybernetics Part A – Systems and Humans, Vol.31, No.3, pp. 210-222, 2001.
- [9] S. Toyama and G. Yamamoto, “Development of Wearable-Agri-Robot – Mechanism for Agricultural Work –,” In Proc. of 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2009), pp. 5801-5806, 2009.
- [10] P. K. Artemiadis and K. J. Kyriakopoulos, “EMG-Based Position and Force Estimates in Coupled Human-Robot Systems: Towards EMG-Controlled Exoskeletons,” O. Khatib, V. Kumar, and D. Rus (Eds.), Experimental Robotics, Springer, pp. 241-250, 2009.
- [11] F. Lacquaniti and C. Maioli, “The Role of Preparation in Tuning Anticipatory and Reflex Responses During Catching,” J. of Neuroscience, Vol.9, No.1, pp. 134-148, 1989.
- [12] D. Shin, J. Kim, and Y. Koike, “A Myokinetic Arm Model for Estimating Joint Torque and Stiffness From EMGSignals During Maintained Posture,” J. of Neurophysiology, Vol.101, No.1, pp. 387-401, 2009.
- [13] Y. Koike and M. Kawato, “Estimation of Dynamic Joint Torques and Trajectory Formation from Surface Electromyography Signals Using a Neural Network Model,” Biological Cybernetics, Vol.73, No.4, pp. 291-300, 1995.
- [14] N. Hogan, “Adaptive-Control of Mechanical Impedance by Coactivation of Antagonist Muscles,” IEEE Trans. on Automatic Control, Vol.29, No.8, pp. 681-690, 1984.
- [15] Y. Koike, J. Kim, and D. Shin, “Role of Stiffness in Weight Perception,” Japanese Psychological Research, Vol.48, No.3, pp. 174-187, 2006.
- [16] J. Izawa, T. Shimizu, T. Aodai, T. Kondo, H. Gomi, S. Toyama, and K. Ito, “MR Compatible Manipulandum with Ultrasonic Motor for fMRI Studies,” In Proc. of 2006 IEEE Int. Conf. on Robotics and Automation (ICRA 2006), pp. 3850-3854, 2006.
- [17] R. Osu, N. Kamimura, H. Iwasaki, E. Nakano, C. M. Harris, Y. Wada, and M. Kawato, “Optimal Impedance Control for Task Achievement in the Presence of Signal-Dependent Noise,” J. of Neurophysiology, Vol.92, No.2, 1199-1215, 2004.
- [18] P. A. Cook, “Nonlinear Dynamical Systems,” Prentice-Hall Int., UK, 1986.
- [19] K. Ito and T. Tsuji, “Bilinear Characteristics of Musculo-Skeletal Motor Systems and Their Application to Prosthesis Control,” Trans. of the Institute of Electrical Engineers of Japan, Vol.C-105, No.10, pp. 201-208, 1985. (in Japanese)
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.