Paper:
Predictive Dynamics-Based Motion Control for the Rough-Terrain Locomotion of the Personal Vehicle Falcon-III
Ewerton Ickowzcy*, Takeshi Aoki**, and Shigeo Hirose*
*Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, I1-52, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
**Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
- [1] D. L. Kamen, D. Field, and J. B. Morrel, “Riderless Stabilization of a Balancing Transporter,” U.S. Patent 6,779,621 B2, August 24, 2004.
- [2] K. Fujita, “Vehicle and Toy Replica thereof,” U.S. Patent D614,998 S, May 4, 2010.
- [3] E. Ickowzcy, T. Aoki, and S. Hirose, “Development of a New Type of Personal Vehicle for Rough-Terrain Applications,” J. of Robotics and Mechatronics, Vol.23, No.1, February 2011.
- [4] S. Hirose, T. Sensu, and S. Aoki, “The TAQT Carrier: A Practical Terrain-Adaptive Quadru-Track Carrier Robot,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Raleigh, NC, July, 1992.
- [5] D.Wettergreen, D. Jonak, D. Kohanbash, S. J. Moreland, S. Spiker, J. Teza, and W. L. Whittaker, “Design and Experimentation of a Rover Concept for Lunar Crater Resource Survey,” 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009.
- [6] Y. Uchida, K. Furuichi, and S. Hirose, “Fundamental Performance of 6 Wheeled Off-Road Vehicle HELIOS-V,” Proc. IEEE Int. Conf. on Robotics and Automation, 1999.
- [7] S. Nakajima, E. Nakano, and T. Takahashi, “Free Gait Algorithm with Two Returning Legs of a Leg-Wheel Robot,” J. of Robotics and Mechatronics, Vol.20, No.4, pp. 661-668, 2008.
- [8] S. Nakajima, “Concept of a novel four-wheel-type mobile robot for rough terrain, RT-Mover,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, MO, October, 2009.
- [9] K. Hashimoto, Y. Sugahara, H. Lim, and A. Takanishi, “Biped Landing Pattern Modification Method and Walking Experiments in Outdoor Environment,” J. of Robotics and Mechatronics, Vol.20, No.5, pp. 775-784, 2008.
- [10] M. Vukobratovic and B. Borovac, “Zero-Moment Point – Thirty Five Years of Its Life,” Int. J. of Humanoid Robotics, Vol.1, No.1, pp. 157-173, 2004.
- [11] K. J. Astrom, R. E. Klein, and A. Lennartsson, “Bicycle dynamics and control: adapted bicycles for education and research,” IEEE Control Systems Magazine, Vol.25, No.4, pp. 26-47, 2005.
- [12] A. Okawa, L. Keo, and M. Yamakita, “Realization of acrobatic turn via wheelie for a bicycle with a balancer,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2965-2970, 2009.
- [13] S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara, M. Inaba, and H. Inoue, “A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot,” Autonomous Robots, Vol.12, pp. 71-82, 2002.
- [14] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part I,” IEEE Trans. on Systems, Man, and Cybernetics, Vol.20, No.2, pp. 404-418, Mar./Apr. 1990.
- [15] K. Demura, “Robot Simulation – Robot programming with Open Dynamics Engine,” Morikita Publishing Co. Ltd., Tokyo, 2007.
- [16] C. A. Pickover, “Generating Extraterrestrial Terrain,” IEEE Computer Graphics and Applications, Vol.15, Issue 2, 1995.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2011 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.