JRM Vol.23 No.3 pp. 426-433
doi: 10.20965/jrm.2011.p0426


Maskless Gray Scale Lithography and its 3D Microfluidic Applications

Yoko Yamanishi*1, Takuma Nakano*2, Yu Sawada*3,
Kazuyoshi Itoga*4, Teruo Okano*4, and Fumihito Arai*5

*1JST PRESTO, Department of Mechanical Science & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

*2Japan Society for the Promotion of Science (JSPS), Japan

*3Kyoto University, Japan

*4Tokyo Women’s University, Japan

*5Nagoya University, Japan

October 29, 2010
April 13, 2011
June 20, 2011
grayscale lithography, three-dimensional photolithography, microTAS, micro-valve, cell manipulation
This paper presents the novel three-dimensional fabrication using maskless exposure equipment and threedimensional (3D) microfluidic cell manipulation uses grayscale data to directly control the exposed photoresist height without using a mask. The 3D microchannel and microvalve were fabricated simply using lowcost exposure and height ranging from 0 to 200 µm. The 3D microvalve prevents liquid leakage when the membrane is closed – difficult to do using conventional 2D photolithography. We removed the oocyte zona pellucida passing through the 3D microchannel whose cross-section is gradually restricted along the path to provide mechanical stimulation omnidirectionally on the oocyte surface. The microfluidic chip may contribute to make high peeled-oocyte throughput effective without damaging the oocytes.
Cite this article as:
Y. Yamanishi, T. Nakano, Y. Sawada, K. Itoga, T. Okano, and F. Arai, “Maskless Gray Scale Lithography and its 3D Microfluidic Applications,” J. Robot. Mechatron., Vol.23 No.3, pp. 426-433, 2011.
Data files:
  1. [1] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, and K. Irie, “An in vitro patient-tailored biological model of cerebral artery reproduced with membranous configuration for simulating endovascular intervention,” J. of Robotics and Mechatronics, Vol.17, No.3, pp. 327-334, 2005.
  2. [2] S.Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett., Vol.22, No.2, pp. 132-134, 1997.
  3. [3] Huang, Y. Wang, T. Chuang, and C. Fu, “3D high aspect ratio micro- structures fabricated by one step UV lithography,” J. Micromech. Microeng., Vol.17, No.2, pp. 291-296, 2007.
  4. [4] K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B, Vol.23, No.4, pp. 1487-1490, 2005.
  5. [5] K. Hanai, S. Shimizu, and Y. Matsumoto, “Three dimensional structures of negative-tone photoresist by binary optics,” IEEJ Trans. Sensors Micromach., Vol.125, No.10, pp. 424-425, 2005.
  6. [6] J. Taff, Y. Kashte, V. Spinella-Mamo, and M. Paranjape, “Fabricating multilevel SU-8 structures in a single photolithographic step using colored masking patterns,” J. Vac. Sci. Technol. A, Vol.24, No.3, pp. 742-746, 2006.
  7. [7] H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction photolithography using microlens arrays: Application in gray scale photolithography,” Anal. Chem, Vol.74, No.14, pp. 3267-3273, 2002.
  8. [8] H. Poor, “An Introduction to Signal Detection and Estimation,” New York: Springer-Verlag, 1985.
  9. [9] R. Mori and Y. Matsumoto, “UV light transparency emulsion grayscale mask and 3-D micromachining of photosensitive glass,” IEEJ Trans. Sensors Micromach., Vol.123, No.11, pp. 499-503, 2003.
  10. [10] A. Manz, N. Graber, and H. M. Windmer, “Miniaturized total a chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators, B1, pp. 244-248, 1990.
  11. [11] K. Wang, W. Oh, and C. H. Ahn, “A review of microvalves,” J. Micromech. Microeng., Vol.16, pp. R13-R39, 2006.
  12. [12] Y. Yamanishi, S. Sakuma, K. Onda, and F. Arai, “Powerful Actuation of Magnetized Microtools by Focused Magnetic Field for Particle Sorting in a Chip,” Biomedical Microdevices, Vol.12, pp. 745-752, 2010.
  13. [13] M. Hagiwara, T. Kawahara, Y. Yamanishi, and F. Arai, “Driving Method of Microtool by Horizontally-arranged Permanent Magnets for Single CellManipulation,” Applied Physics Letters, Vol.97, 013701, 2010.
  14. [14] Y. Yamanishi, S. Sakuma, Y. Kihara, and F. Arai, “Fabrication and Application of 3D Magnetically Driven Microtools,” J. of Microelectromechanical Systems, Vol.19, No.2, pp. 350-357, 2010.
  15. [15] H. C. Zeringue, D. J. Beebe, and M. B. Wheeler, “Removal of Cumulus from Mammalian Zygotes Using Microfulidic Techniques,” Biomedical Microdevices, Vol.3, pp. 219-224, 2001.
  16. [16] Y. Yamanishi, S. Sakuma, T. Iyanagi, F. Arai, T. Arai, A. Hasegawa, T. Tanikawa, A. Ichikawa, O. Sato, A. Nakayama, H. Aso,M. Goto, S. Takahashi, and K. Matsukawa, “Design and Fabrication of Allin-One Unified Microfluidic Chip for Automation of Embryonic Cell Manipulation,” J. of Robotics and Mechatronics, Vol.22, No.3, pp. 371-379, 2010.
  17. [17] A. Ichikawa, T. Tanikawa, K. Matsukawa, S. Takahashi, and K. Ohba, “Fluorescent Monitoring Using Microfluidics Chip and Development of Syringe Pump for Automation of Enucleation to Automate Cloning,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2231-2236, 2009.
  18. [18] K. D.Wells and A.M. Powell, “Blastomeres from Somatic Cell Nuclear Transfer Embryos Are Not Allocated Randomly in Chimeric Blastocysts,” Cloning, Vol.2, No.1, 2000.
  19. [19] Y. Yamanishi, T. Kawahara, T. Iyanagi, M. Hagiwara, T. Mizunuma, N. Inomata, S. Kudo, and F. Arai, “Two DOF Magnetically Driven Microtool for Soft Peeling of Zona Pellucida,” J. of Robotics and Mechatronics, Vol.22, No.5, 2010.
  20. [20] K. Itoga et al., “Second-Generation Maskless Photolithography Device for Surface Micro-patterning and Microfluidic Channel Fabrication,” Biomaterials, Vol.25, pp. 2047-2053, 2004.
  21. [21] K. Itoga, J. Kobayashi, Y. Tsuda, M. Yamato, and T. Okano, “Second-Generation Maskless Photolithography Device for Surface Micro patterning and Microfluidic Channel Fabrication,” Anal. Chem. Vol.80, pp. 1323-1327, 2008.
  22. [22] P. J. Jacob and T. H. Pang, “Fundamental High Speed Three-Dimensional Moulding,” Tokyo, Japan: Nikkei Business Publications, Vol.457, pp. 29-33, 1993.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024