JRM Vol.23 No.3 pp. 370-377
doi: 10.20965/jrm.2011.p0370


On-Chip Particle Sorting into Multiple Channels by Magnetically Driven Microtools

Masaya Hagiwara*, Miyako Niimi*, Tomohiro Kawahara*,
Yoko Yamanishi**, Hayao Nakanishi***, and Fumihito Arai*

*Department of Mechanical Science & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

**JST PRESTO, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

***Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi 464-8682, Japan

October 6, 2010
February 16, 2011
June 20, 2011
sorter, magnetically driven microtool, microactuator, lab on a chip

This paper presents a new type of sorting system by magnetic microtools (MMT) separating particles into multiple channels. Two nickel-based MMTs are activated by commercially available permanent magnets below the biochip to lead particles to certain channels via fluid force. The horizontally assembled permanent magnet drive we developed shows that the MMT positioning accuracy had been improved 5 times in 2 degrees of freedom. The channel and the MMT shape are determined based on FEM analysis to ensure that particles flow smoothly. We have successfully achieved to sort 100 µm diameter microbeads into 7 branched channels. The noncontact drive and disposable chip provide a less invasive environment for the cell with low cost.

Cite this article as:
M. Hagiwara, M. Niimi, T. Kawahara, <. Yamanishi, H. Nakanishi, and F. Arai, “On-Chip Particle Sorting into Multiple Channels by Magnetically Driven Microtools,” J. Robot. Mechatron., Vol.23, No.3, pp. 370-377, 2011.
Data files:
  1. [1] W. A. Bonner, H. R. Hulett, and R. G. Sweet, “Fluorescence Activated Cell Sorting,” The Review of Scientific Instruments, Vol.43, No.3, 1972, pp. 404-409 1972.
  2. [2] R. Barry and D. Ivanov, “Microfluidics in Biotechnology,” J. of Nanobiotechnology, Vol.2, No.1, 2004.
  3. [3] J. Yang, Y. Huang, X. Wang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrotation as a Cell Separation Criterion,” Biophysical J., Vol.76, pp. 3307-3314, 1999.
  4. [4] A. Rosenthal and J. Voldman, “Dielectrophoretic Traps for Single-Particle Patterning,” Biophysical J., Vol.88, pp. 2193-2205, 2005.
  5. [5] C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automati Microfluidic Platform for Cell Separation and Nucleus Collection,” Biomed Microdevices, Vol.8, pp. 533-543, 2007.
  6. [6] F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, “High-Speed Separation Systems of Randomly Suspended Single Living Cells by Laser Trap and Dielectrophoresis,” Electrophoresis, Vol.22, pp. 283-288, 2001.
  7. [7] T. Nishimura, J. Miwa, Y. Suzuki, and N. Kasagi, “Label-Free Continuous Cell Sorter with Specifically Adhesive Oblique Micro-Grooves,” J. of micromechanics and microengineering, Vol.19, 2009.
  8. [8] Y. Yamanishi, S. Sakuma, K. Onda, and F. Arai, “Biocompatible Polymeric Magnetically Driven Microtool for Particle Sorting,” J. of Micro-Nano Mechatronics, Vol.4, pp. 49-57, 2008.
  9. [9] S. Martel, C. Tremblay, S. Ngakeng, and G. Langlois, “Controlled Manipulation and Actuation of Micro-Objects with Magnetotactic Bacteria,” Applied Physics Letters, Vol.233904, pp. 89-91, 2006.
  10. [10] M. Roper, R. Dreyfus, J. Baudry, M. Fermigier, J. Bibette, and H. A. Stone, “On the Dynamics of Magnetically Driven Elastic Filaments,” J. of Fluid Mechanics, Vol.554, pp. 167-188, 2006.
  11. [11] C. Pawashe, S. Floyd, and M. Sitti, “Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot,” Int. J. of Robotics Research, Vol.28, 2009, pp. 1077-1094, 2009.
  12. [12] J. J. Abott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How Should Microrobots Swim?,” The Int. J. of Robotics Research, Vol.28, 2009, pp. 1434-1447, 2009.
  13. [13] M. S. Sakar, E. B. Steager, D. H. Kim,M. J. Kim, G. J. Pappas, and V. Kumar, “Single Cell Manipulation Using Ferromagnetic Composite Microtransporters,” Applied physics letters, Vol.96, Issue 4, pp. 96-98, 2010.
  14. [14] J. J. Abott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies,” IEEE Trans. on Robotics, Vol.23, 2007, pp. 1247-1252, 2007.
  15. [15] M. Hagiwara, T. Kawahara, Y. Yamanishi, and F. Arai, “Driving Method of Microtool by Horizontally-Arranged Permanent Magnets for Single CellManipulation,” Applied Physics Letters, Vol.97, No.1, 2010.
  16. [16] E. R. M. Gelinck and D. J. Schipper, “Calculation of Stribeck Curves for Line Contacts,” Tribology International, Vol.33, No.7, 2000.
  17. [17] X. Lu,M.M. Khonsari, and E. R.M. Gelinck, “The Stribeck Curve: Experimental Results and Theoretical Prediction,” J. of Tribology, Vol.128, p. 789, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on May. 31, 2020