JRM Vol.22 No.5 pp. 613-618
doi: 10.20965/jrm.2010.p0613


Fabrication of Line and Grid Patterns with Cells Based on Negative Dielectrophoresis

Tomoyuki Yasukawa*,**, Masato Suzuki***, Hitoshi Shiku***,
and Tomokazu Matsue***

*Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan

**JST-CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan

***Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki, Aoba, Sendai 980-8579, Japan

March 4, 2010
July 5, 2010
October 20, 2010
negative dielectrophoresis, cell manipulation, cell patterning
The rapid, direct fabrication of two-dimensional line patterns with biological cells in a culture medium we report here is based on negative dielectrophoresis (n-DEP). It easily creates a versatile cell micropattern without specially pretreating culture slides. When an alternating electric field, typically 1 MHz, was applied to an InterDigitated band Array (IDA) electrode with four subunits, n-DEP force directs cells toward a weaker of electric field strength region. Cells aligned above attracted bands within 1min. Applying AC voltage for 5 min enables cells to adhere to the cell culture slide. When 12 Vpp is applied, 45-65% cells remain in line after the device is washed and disassembled. Resulting adsorbed cell lines were immersed in a medium to culture cells. n-DEP patterning did not significantly damage cells for growth because of the cell number increased by growth. We fabricated cell grid patterns to demonstrate formation of different patterns. After the device was disassembled and excess cells removed, the culture slide was reassembled with the IDA electrode and was rotated 90° to the previous setup. Second cells were patterned in lines the same way, forming grid patterns on the slide. Micropatterns aligned cells at desired locations enabling a biomimetic structure to be generated with biological functions and to detect cellular response to many kinds of drugs for simultaneous high-throughput screening.
Cite this article as:
T. Yasukawa, M. Suzuki, H. Shiku, and T. Matsue, “Fabrication of Line and Grid Patterns with Cells Based on Negative Dielectrophoresis,” J. Robot. Mechatron., Vol.22 No.5, pp. 613-618, 2010.
Data files:
  1. [1] J. J. Pancrazio, J. P. Whelan, D. A. Borkholder, W. Ma, and D. A. Stenger, “Development and application of cell-based biosensors,” Anna. Biomed. Eng., Vol.27, pp. 697-711, 1999.
  2. [2] D. A. Stenger, G. W. Gross, E. W. Keefer, K. M. Shaffer, J. D. Andreadis, W. Ma, and J. J. Pancrazio, “Detection of physiologically active compounds using cell-based biosensors,” Trends Biotechnol., Vol.19, pp. 304-309, 2001.
  3. [3] S. Raghavan and C. S. Chen, “Micropatterned environments in cell biology,” Adv. Mater., Vol.16, pp. 1303-1313, 2004.
  4. [4] D. Falconnet, , G. Csucs, H. M. Grandin, and M. Textor, “Surface engineering approaches to micropattern surfaces for cell-based assaysm,” Biomaterials 2006, Vol.27, 3044-3063.
  5. [5] R. S. NKane and S. Takayama, E. Ostuni, and D. E. Ingber, and G. M. Whitesides, “Patterning proteins and cells using soft lithography,” Biomaterials, Vol.20, pp. 2363-2376, 1999.
  6. [6] A. Khademhosseini, K. Y. Suh, S. Jon, G. Eng, J. Yeh, G. J. Chen, and R. Langer, “A soft lithographic approach to fabricate patterned microfluidic channels,” Anal. Chem., Vol.76, pp. 3675-3681, 2004.
  7. [7] W. Tan, and T. A. Desai, “Microfluidic patterning of cells in extracellular matrix biopolymers: Effects of channel size, cell type, and matrix composition on pattern integrity,” Tissue Eng., Vol.9, pp. 255-267, 2003.
  8. [8] R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides, and D. E. Ingber, “Engineering cell shape and function,” Science, Vol.264, pp. 696-698, 1994.
  9. [9] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science, Vol.276, pp. 1425-1428, 1997.
  10. [10] X. Y. Jiang, R. Ferrigno, M. Mrksich, and G. M. Whitesides, “Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements,” J. Am. Chem. Soc., Vol.125, pp. 2366-2367, 2003.
  11. [11] Y. Li, B. Yuan, H. Ji, D. Han, S. Chen, F. Tian, and X. Jiang, “A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels,” Angew. Chem. Int. Ed., Vol.46, pp. 1094-1096, 2007.
  12. [12] M. N. Yousaf, B. T. Houseman, and M. Mrksich, “Turning on cell migration with electroactive substrates,” Angew. Chem. Int. Ed., Vol.40, pp. 1093-1096, 2001.
  13. [13] M. N. Yousaf, B. T. Houseman, and M. Mrksich, “Using electroactive substrates to pattern the attachment of two different cell types,” Proc. Natl. Acad. Sci. USA., Vol.98, pp. 5992-5996, 2001.
  14. [14] H. Kaji, K. Tsukidate, M. Hashimoto, T. Matsue, and M. Nishizawa, “Patterning the surface cytophobicity of an albumin-physisorbed substrate by electrochemical means,” Langmuir, Vol.21, pp. 6966-6969, 2005.
  15. [15] H. Kaji, K. Tsukidate, T. Matsue, and M. Nishizawa, “In situ control of cellular growth and migration on substrate using microelectrodes,” J. Am. Chem. Soc., Vol.126, pp. 15026-15027, 2004.
  16. [16] H. Kaji, M. Kanada, D. Oyamatsu, T. Matsue, and M. Nishizawa, “Microelectrochemical approach to induce local cell adhesion and growth on substrates,” Langmuir, Vol.20, pp. 16-19, 2004.
  17. [17] J. Edahiro, K. Sumaru, Y. Tada, K. Ohi, T. Takagi, M. Kameda, T. Shinbo, T. Kanamori, and Y. Yoshimi, “In situ control of cell adhesion using photoresponsive culture surface,” Baiomacromolecules, Vol.6, pp. 970-974, 2005.
  18. [18] H. Morgan and N. G. Green, “AC Electrokinetics: Colloids and Nanoparticles,” Research Studies Press Ltd., Baldock, UK, 2002.
  19. [19] T. Yamamoto, O. Kurosawa, H. Kabata, N. Shimamoto, and M. Washizu, “Molecular surgery of DNA based on electrostatic micromanipulation,” IEEE Trans. Ind. Appl., Vol.36, pp. 1010-1017, 2000.
  20. [20] K. E. Sung and M. A. Burns, “Optimization of dielectrophoretic DNA stretching in microfabricated devices,” Anal. Chem., Vol.78, pp. 2939-2947, 2006.
  21. [21] S. B. Asokan, L. Jawerth, R. L. Carroll, R. E. Cheney, S.Washburn, and R. Superfine, “Two-dimensional manipulation and orientation of actin-myosin systems with dielectrophoresis,” Nano. Lett., Vol.3, pp. 431-437, 2003.
  22. [22] R. Holzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett., Vol.95, pp. 128102-1-4, 2005.
  23. [23] M. P. Hughes, H. Morgan, F. J. Rixon, J. P. H. Burt, and R. Pethig, “Manipulation of herpes simplex virus type 1 by dielectrophoresis,” Biochim. Biophys. Acta, Vol.1425, pp. 119-126, 1998.
  24. [24] Y. Huang, K. L. Ewalt, M. Tirado, T. R. Haigis, A. Forster, D. Ackley, M. J. Heller, J. P. O’Connell, and M. Krihak, “Electric manipulation of bioparticles and macromolecules on microfabricated electrodes,” Anal. Chem., Vol.73, pp. 1549-1559, 2001.
  25. [25] B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, “Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water,” Electrophoresis, Vol.25, pp. 1695-1704, 2004.
  26. [26] P. R. C. Gascoyne, and J. Vykoukal, “Particle separation by dielectrophoresis,” Elelctrophoresis, Vol.23, pp. 1973-1983, 2002.
  27. [27] F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoykal, and P. R. C. Gascoyne, “Separation of human breast cancer cells from blood by differential dielectric affinity,” Proc. Natl. Acad. Sci. USA, Vol.92, pp. 860-864, 1995.
  28. [28] D. Holmes, N. G. Green, and H. Morgan, “Microdevices for dielectrophoretic flow-through cell separation,” IEEE Eng. Med. Biol. Mag., Vol.22, pp. 85-90, 2003.
  29. [29] X. Y. Hu, P. H. Bessette, J. R. Qian, C. D. Meinhart, P. S. Daugherty, and H. T. Soh, “Marker-specific sorting of rare cells using dielectrophoresis,” Proc. Natl. Acad. Sci. USA, Vol.102, pp. 15757-15761, 2005.
  30. [30] M. Suzuki, T. Yasukawa, Y. Mase, D. Oyamatsu, H. Shiku, and T. Matsue, “Dielectrophoretic micropatterning with microparticle monolayers covalently linked to glass surfaces,” Langmuir, Vol.20, pp. 11005-11011, 2004.
  31. [31] M. Suzuki, T. Yasukawa, H. Shiku, T. Matsue, “Negative-dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel,” Langmuir, Vol.23, pp. 4088-4094, 2007.
  32. [32] N. Matsumoto, T. Matsue, and I. Uchida, “Paired cell alignment using jagged microarray electrode,” Bioelectrochem. Bioenerg., Vol.34, pp. 199-202, 1994.
  33. [33] M. Suzuki, T. Yasukawa, H. Shiku, and T. Matsue, “Negative dielectrophoretic patterning with different cell types,” Biosens. Bioelectron., Vol.24, pp. 1043-1047, 2008.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024