Paper:
Learning of Whole Arm Manipulation with Constraint of Contact Mode Maintaining
Nobuyuki Kawarai and Yuichi Kobayashi
Tokyo University of Agriculture and Technology, 2-14-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- [1] M. J. Cherif and K. K. Gupta, “Planning quasi-static fingertip manipulations for reconfiguring objects,” IEEE Trans. on Robotics and Automation, Vol.15, No.5, pp. 837-848, 1999.
- [2] M. Yashima, Y. Shiina, and H. Yamaguchi, “Randomized Manipulation Planning for A Multi-Fingered Hand by Switching Contact Modes,” Proc. of IEEE Int. Conf. on Robotics and Automation, 2003.
- [3] E. Yoshida, P. Blazevic, V. Hugel, K. Yokoi, and K. Harada, “Pivoting a Large Object: Whole-body Manipulation by a Humanoid Robot,” Applied Bionics and Biomechanics, Vol.3, No.3, pp. 227-235, 2006.
- [4] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato, “Learning from demonstration and adaptation of biped locomotion,” Robotics and Autonomous Systems, Vol.47, No.2-3, pp. 79-91, 2004.
- [5] R. Sutton and A. Barto, “Reinforcement Learning,” MIT Press, 1998.
- [6] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement Learning of Walking Behavior for a Four-Legged Robot,” Proc. of IEEE Conf. on Decision and Control, pp. 411-416, 2001.
- [7] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning,” Robotics and Autonomous Systems, Vol.36, No.1, pp. 37-51, 2001.
- [8] H. Miyamoto, J. Morimoto, K. Doya, and M. Kawato, “Reinforcement learning with via-point representation,” Neural Networks, Vol.17, No.3, pp. 299-305, 2004.
- [9] Y. Kobayashi, M. Shibata, S. Hosoe, and Y. Uno, “Learning of object manipulation with stick/slip mode switching,” Proc. of Int. Conf. on Intelligent Robots and Systems, pp. 373-379, 2008.
- [10] T. Odashima, et al., “A Soft Human-Interactive Robot RI-MAN,” Video Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006.
- [11] S. Nakaoka, S. Hattori, F. Kanehiro, S. Kajita, and H. Hirukawa, “Constraint-based Dynamics Simulator for Humanoid Robots with Shock Absorbing Mechanisms,” The 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007.
- [12] A. Schaft and H. Schumacher, “An Introduction to Hybrid Dynamical Systems,” Springer, 2000.
- [13] V. N. Vapnik, “The Nature of Statistical Learning Theory,” Springer,1995.
- [14] O. L. Mangasarian and D. R. Musicant, “Lagrangian Support Vector Machines,” J. of Machine Learning Research, Vol.1, pp. 161-177, 2001.
- [15] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, “Natural Actor-Critic Algorithms,” Automatica, Vol.45, No.11, pp. 2471-2482, 2009.
- [16] D. W. Scott and S. R. Sain, “Multi-Dimensional Density Estimation,” Handbook of Statistics – Vol 23: Data Mining and Computational Statistics, 2004.
- [17] T. Schlegl, M. Buss, and G. Schmidt, “Hybrid Control of Multi-fingered Dexterous Robotic Hands,” S. Engell, G. Frehse, E. Schnieder (Eds.): Modelling, Analysis and Design of Hybrid Systems, LNCIS, Vol.279, pp. 437-465, 2002.
- [18] Y. Yin, S. Hosoe, and Z. Luo, “A Mixed Logic Dynamical Modeling Formulation and Optimal Control of Intelligent Robots,” Optimization Engineering, Vol.8, pp. 321-340, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2010 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.