single-rb.php

JRM Vol.20 No.3 pp. 441-448
doi: 10.20965/jrm.2008.p0441
(2008)

Paper:

Patient-Specific IVR Endovascular Simulator with Augmented Reality for Medical Training and Robot Evaluation

Seiichi Ikeda*, Carlos Tercero Villagran*, Toshio Fukuda*,
Yuta Okada*, Fumihito Arai**, Makoto Negoro***,
Motoharu Hayakawa***, and Ikuo Takahashi****

*Dept. of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan

**Dept. of Bioengineering and Robotics, Tohoku University, Sendai, Miyagi 980-8579, Japan

***Dept. of Neurosurgery School of Medicine, Toyoake, Aichi 470-1192, Japan

****Dept. of Neurosurgery, Anjo Kosei Hospital

Received:
September 28, 2007
Accepted:
March 27, 2008
Published:
June 20, 2008
Keywords:
patient specific organ model, endovascular intervention, augumented reality, rapid prototyping, photoelastic analysis
Abstract
Endovascular intervention using interventional radiology (IVR) is most commonly used in cerebralvascular treatment. Medical imaging such as digital subtraction angiography (DSA) and vascular mapping make vasculature and catheters easier to read from fluoroscopy during endovascular intervention. We propose simulating IVR using augmented reality, reproducing fluoroscopic images and a patient-specific blood vessel model without X-ray imaging. The advantages of the patient-specific vascular model reproducing the human vasculature lumen with 13 μm resolution include 1) a realistic “feel,” 2) excellent tool behavior simulation during intervention, and 3) surgical training alternative to physician training in-vitro. Simulated fluoroscopic images are created in two steps: First, the blood vessel model refraction index is matched to surrounding glycerin solution to conceal the vascular model, making the silicone vasculature appear human as seen in endovascular intervention. Second, an augmented reality (AR) environment is created using image subtraction and overlap, making model-based endovascular simulation more understandable for catheter use and fluoroscopy use and reading.
Cite this article as:
S. Ikeda, C. Villagran, T. Fukuda, Y. Okada, F. Arai, M. Negoro, M. Hayakawa, and I. Takahashi, “Patient-Specific IVR Endovascular Simulator with Augmented Reality for Medical Training and Robot Evaluation,” J. Robot. Mechatron., Vol.20 No.3, pp. 441-448, 2008.
Data files:
References
  1. [1] A. Molyneux, R. Kerr, I. Stratton, P. Sandercock, et al. ;International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group, “International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial,” Lancet, Vol.360, pp. 1267-1274, 2002.
  2. [2] P. Ng, M. S. Khangure, C. C. Phatouros, M. Bynevelt, et al., “Endovascular Treatment of Intracranial Aneurysms With Guglielmi Detachable Coils: Analysis of Midterm Angiographic and ClinicalOutcomes,” Stroke, Vol.33, pp. 210-217, 2002.
  3. [3] S. C. Johnston, D. R. Gress, and J. G. Kahn, “Which unruptured cerebral aneurysms should be treated?: A cost? utility analysis,” Neurology, Vol.52, pp. 1806-1815, 1999.
  4. [4] J. E. Jordan, M. P. Marks, B. Lane, and G. K. Steinberg, “Costeffectiveness of endovascular therapy in the surgical management of cerebral arteriovenous malformations,” Am. J. Neuroradiol, Vol.17, pp. 247-254, 1996..
  5. [5] P. Bairstow, A. Dodgson, J. Linto, and M. Khangure, “Comparison of cost and outcome of endovascular and neurosurgical procedures in the treatment of ruptured intracranial aneurysms,” Australasian Radiology, Vol.46, pp. 249-251, 2002.
  6. [6] M. Tanimoto, F. Arai, T. Fukuda, H. Iwata, et al., “Micro Force Sensor for Intravascular Neurosurgery,” ICRA 1997, pp 1561-1566, 1997.
  7. [7] M. Tanimoto, F. Arai, T. Fukuda, and M. Negoro, “Augmentation of Safety in Tele-operation System for Intravascular Neurosurgery,” ICRA 1998, pp. 2890-2895, 1998.
  8. [8] C. W. Kerber, C. B. Heilman, and P. H. Zanetti, “Transparent elastic arterial model I: a brief technical note,” Biorheology, Vol.26, pp. 1041-1049, 1998.
  9. [9] C. W. Kerber and C. B. Heilman, “Flowdynamics in the carotid artery: 1. Preliminary observations usig a transparent elastic model,” Am. J. Neuroradiol, Vol.13, pp. 173-180, 1992.
  10. [10] P. Gailloud, J. R. Pray, M. Muster, M. Piotin, J. H. D. Fasel, and D. A. Rufenacht, “An in vitro anatomic model of the human cerebral arteries with saccular arterial aneurysms,” Surg Radiol Anat, Vol.19, pp. 119-121, 1997.
  11. [11] P. Gailloud, J. R. Pray, M. Muster, M. Piotin, et al., “In vitro models of intracranial arteriovenous fistulas for evaluation of new endovascular treatment materials,” Am. J. Neuroradiol, Vol.20, pp. 291-295, 1999..
  12. [12] K. Sugiu, J. B. Martin, B. Jean, P. Gailloud, et al., “Artificial Cerebral AneurzsmModel forMedical Testing, Training, and Research,” Neurol Med Chir, Vol.43, pp. 69-73, 2003.
  13. [13] F. Mottu, P. Gailloud, D. Massuelle, D. A. Rufecacht, et al., “In vitro assessment of new embolic liquids prepared from preformed polymers and water-miscible solvents for aneurysm treatment,” Biomaterials, Vol.21, pp. 803-811, 2000.
  14. [14] B. W. Chong, C. W. Kerber, R. B. Buxton, and L. R. Frank, “Blood flow dynamics in the vertebrobasilar system: Correlation of a transparent elastic model and MR angiography,” Am. J. Neuroradiol, Vol.15, pp. 733-745, 1994.
  15. [15] S. Tateshima, Y. Murayama, J. P. Villablanca et al., “In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneuryms harboring blebs,” Stroke, Vol.34, pp. 193-199, 2003.
  16. [16] A. M. Norbash and R. J. Singera, “Videographic Assessment of the embolic characteristics of three polymeric compounds: Ethylene vinyl alcohol, cellulose acetate, and liquid urethane,” Am. J. Neuroradiol, Vol.22, pp. 334-340, 2001.
  17. [17] M. P. Marks, H. Chee, R. P. Liddell, G. K. Steinberg, et al., “A mechanically detachable coil for the treatment of aneurysms and occlusion of blood vessels,” Am. J. Neuroradiol, Vol.15, pp. 821-827, 1994.
  18. [18] T. A. Altes, H. J. Cloft, J. G. Short, A. DeGast, et al., “Creation of saccular aneurysms in the rabbit: A model suitable for tesintg endovasucular devices,” Am. J. Roentgenology, Vol.174, pp. 349-354, 2000.
  19. [19] R. A. Caldwell, J. E. Woodell, S. P. Ho, S. W, Shalaby, et al., “In vitro evaluation of phosphonylated low-density polyethylene for vascular appliations,” J. Biomed Mater Res, Vol.62, pp. 514-524, 2002.
  20. [20] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, et al., “Patient-Tailored Cerebral Arterial Model for Simulating Neurovascular Intervention (1st In Vitro Reproduction of Vasculature Structure with Biomechanics),” Journal of Japan Society ofMechanical Engineers, Series C, Vol.71, No.707, pp. 260-2672, 2005. (in Japanese).
  21. [21] S. Ikeda, F. Arai, T. Fukuda, M. Negoro et al., “An In Vitro Patient-Specific Biological Model of the Cerebral Artery Reproduced with a Membranous Configuration for Simulating Endovascular Intervention,” Journal of Robotics and Mechatronics, Vol.17, No.3, pp. 327-334, 2005.
  22. [22] S. Ikeda, F. Arai, T. Fukuda, M. Negoro et al., “An In Vitro Patient-Tailored Model of Human Cerebral Artery for Simulating Endovascular Intervention,” Lecture Notes in Computer Science, No.3749, pp. 925-932, 2005.
  23. [23] P. A. Turski, M. F. Stieghorst, C. M. Strother, et al. “Digital Subtraction Angiography “Road Map”,” AJR, Vol.139, pp. 1233-1234,
  24. [24] A. Chong, M. C. Soulen, R. A. Baum, et al. “Balloon Embolization of the Internal Iliac Artery before Aneurysm Endograft Deployment,” JVIR, Vol.12, pp. 637-639,

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 13, 2024