JRM Vol.20 No.2 pp. 250-259
doi: 10.20965/jrm.2008.p0250


Development of Micro Forceps and Implementation for Medical Apparatus

Yusuke Hashimoto*, Makoto Nokata*, Hiroshi Kitou**,
Yoshimitsu Kankawa**, and Kei Ameyama*

*Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

**Technes Corporation

September 19, 2007
December 5, 2007
April 20, 2008
micro forceps, catheter, minimally invasive surgery
Laparoscopic forceps and catheters enabling minimally invasive surgery (MIS) require microscopic tools. The microforceps we designed using a minimum number of parts use metal injection molding (MIM) to realize strong mass production. Microforceps installed in the tip of a catheter. Stress analysis verified its capability to grasp, bend and turn within the confines of a blood vessels model.
Cite this article as:
Y. Hashimoto, M. Nokata, H. Kitou, Y. Kankawa, and K. Ameyama, “Development of Micro Forceps and Implementation for Medical Apparatus,” J. Robot. Mechatron., Vol.20 No.2, pp. 250-259, 2008.
Data files:
  1. [1] K. Ikuta, K. Sasaki, and T. Shimada, “Study on Minimal Invasive Remote Microsurgery System (1’st report) Development of MultilinkMicroManipulator andMaster Slave Controller,” In pros. Japan Society of Computer Aided Surgery (JSCAS 2000), pp. 65-66 (in Japanese).
  2. [2] N. Miyata, K. Harada, K. Masamune, I. Sakuma, N. Yahagi, T. Dohi, H. Iseki, T. Hori, and K. Takakura, “Development of a micro forceps manipulator for minimally invasive neurosurgery,” In pros. JSME Conference on Robotics and Mechatronics, Vol.2001 (20010608), p. 44 (in Japanese).
  3. [3] K. Ikuta, K. Sasaki, K. Yamamoto, and T. Shimada, “Remote Microsurgery System for Deep and Narrow Space — Development of New Surgical Procedure and Micro-robotic Tool,” In Medical Image Computing and computer-Assisted Intervention (MICCAI2002), LNCS2488, pp. 163-172, 2002.
  4. [4] N. Suzuki, K. Sumiyama, A. Hattori, K. Ikeda, E. A. Murakami, S. Suzuki, M. Hayashibe, Y. Otake, and H. Tajiri, “Development of an endoscopic robotic system with two hands for various gastric tube surgeries,” MMVR, pp. 349-353, 2002.
  5. [5] N. Suzuki, A. Hattori, M. Hayashibe, Y. Otake, S. Suzuki, E. A. Y. Murakami, K. Sumiyama, K. Ikeda, and H. Tajiri, “Development of an endoscopic robot with two arms and its application for mucosal resection of the stomach wall,” In Proc. Journal of Computer Aided Surgery, Vol.4, No.3-2, pp. 117-118, 2002 (in Japanese).
  6. [6] M. Nokata, H. Furuoya, and Y. Kurumi, “Development of Laparoscopic Surgical Forceps with high rigid bending joint,” In Proc. JSME Robotics and Mechatronics Conference 2007, 2A1-H12(1-4), 2007 (in Japanese).
  7. [7] S. Konishi, M. Nokata, O. C. Jeong, S. Kusuda, T. Sakakibara, M. Kuwayama, and H. Tsutsumi, “Pneumatic Micro hand and miniaturized parallel link robot for Micro Manipulation Robot System,” In Proc. 2006 IEEE Robotics and Automation Conference (ICRA 2006), pp. 1036-1041, 2006.
  8. [8] N. Yasui, H. Satomi, H. Fujiwara, K. Ameyama, and Y. Kankawa, “The Influence of Powder Size on Mechanical Properties of Small MIM Parts,” Proc. of 2006 Powder Metallurgy World Congress, Korean Powder Metallurgy Institute, pp. 39-40, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2024