Paper:
Fabrication of Cell-Adhesion Surface and Arteriole Model by Photolithography
Fumihito Arai*, Takuma Nakano*, Mika Tada*, Yu-Ching Lin*,
Seiichi Ikeda**, Tomoyuki Uchida**, Hiroyuki Oura**,
Toshio Fukuda**, Takehisa Matsuda***, and Makoto Negoro****
*Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
**Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
***Kanazawa Institute of Technology, 3-1 Yasukaho, Hakusan, Ishikawa 924-0838, Japan
****Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- [1] L. G. Griffith and G. Naughton, “Tissue Engineering – Current Challenges and Expanding Opportunities,” Science, Vol.295, pp. 1009-1014, 2002.
- [2] R. Langer and J. P. Vacanti, “Tissue Engineering,” Science, Vol.260, No.5110, pp. 920-926, 1993.
- [3] T. Matsuda, “Recent Progress of Vascular Graft Engineering in Japan,” Artificial Organs, Vol.28, No.1, pp. 64-71, 2004.
- [4] H. Sonoda, K. Takamizawa, Y. Nakayama, H. Yasui, and T. Matsuda, “Coaxial double-tubular compliant arterial graft prosthesis: time-dependent morphogenesis and compliance changes after implantation,” J. Biomed. Mater. Res. A, 65(2), pp. 170-181, 2003.
- [5] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, K. Irie, and I. Takahashi, “Patient-tailored cerebral arterial model for simulating neurovascular intervention,” Trans. Jpn. Soc. Mech. Eng., C 72, pp. 2601-2607, 2005.
- [6] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, K. Irie, and I. Takahashi, “An In Vitro Patient-Tailored Model of Human Cerebral Artery for Simulating Endovascular Intervention,” MICCAI 2005, LNCS 3749, pp. 925-932, 2005.
- [7] L.Wu, D. Jing, and J. Ding, “A “room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds,” Biomaterials, Vol.27, pp. 185-191, 2006.
- [8] J. Gao, P.M. Crapo, and Y.Wang, “Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering,” Tissue Engineering, Vol.12, No.4, pp. 917-925, 2006.
- [9] P. X. Ma and J-W.Choi, “Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network,” Tissue Engineering, Vol.7, No.1, pp. 23-33, 2001.
- [10] W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds,” Tissue Engineering, Vol.8, No.1, pp. 43-52, 2006.
- [11] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science, Vol.276, No.30, 1997.
- [12] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft Lithography in Biology and Biochemistry,” Annu. Rev. Biomed. Eng., 3, pp. 335-373, 2001.
- [13] A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Micro scale technologies for tissue engineering and biology,” PANS, Vol.103, No.8, pp. 2480-2487, 2006.
- [14] S. N. Bhatia, M. L. Yarmush, and M. Toner, “Controlling cell interactions by micropatterning in co-cultures: Hepatocytes and 3T3 fibroblasts,” Journal of Biomedical Materials Research, Vol.34, pp. 189-199, 1997.
- [15] A. Tourovskaia, X. F-Masot, and A. Folch, “Differentiation-on-achip: A microfluidic platform for long-term cell culture studies,” Lab on a Chip, 5, pp. 14-19, 2005.
- [16] X. Zhu, K. L. Mills, P. R. Peters, J. H. Bahng, E. H. Liu, J. Shim, K. Naruse, M. E. Csete, M. D. Thouless, and S. Takayama, “Fabrication of reconfigurable protein matrices by cracking,” nature materials, Vol.4, No.5, pp. 403-406, 2005.
- [17] M. T. Lam, S. Sim, X. Zhu, and S. Takayama, “The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes,” Biomaterials, 27, pp. 4340-4347, 2006.
- [18] K. Itoga, M. Yamato, J. Kobayashi, A. Kikuchi, and T. Okano, “Cell micropatterning using photopolymerization with a liquid crystal device commercial projector,” Biomaterials, 25, pp. 2047-2053, 2004.
- [19] M. S.Widmer, G. R. D. Evans, K. Brandt et al., “Proceedings of the 1997 Summer Bioengineering Conference, Vol.35,” The American Society for Mechanical Engineers, 1997.
- [20] W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama, “Computerized microfluidic cell culture using elastomeric channels and Braille displays,” PNAS, Vol.101, No.45, pp. 15861-15866, 2004.
- [21] H. Inoguchi, T. Tanaka, Y. Maehara, and T. Matsuda, “The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft,” Biomaterials, Vol.28, pp. 486-495, 2007.
- [22] N. Futai, W. Gu, and S. Takayama, “Rapid Prototyping of Microstructures eith Bell-Shaped Cross-Sections and Its Application to Deformation-Based Microfluidic Valves,” Adv. Mater., Vol.16, No.15, pp. 1320-1323, 2004.
- [23] J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, “Microfabrication Technology for Vascularized Tissue Engineering,” Biomedical Microdevices, Vol.4, No.3, pp. 167-175, 2002.
- [24] E. Leclerc, K. S. Furukawa, F.Miyata, Y. Sakai, and T. Fujii, “Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications,” Biomaterials, 25, pp. 4683-4690, 2004.
- [25] C. J. Bettinger, E. J. Weinberg, K. M. Kulig, J. P. Vacanti, Y. Wang, J. T. Borenstein, and R. Langer, “Three-Dimensional Microfluidic Tissue-Engineering Scaffolds Using a Flexible Biodegradable Polymer,” Adv. Mater., 18, pp. 165-169, 2006.
- [26] K. R. King, C. C. J. Wang, M. R. Kaazempur-Mofrad, J. P. Vacanti, and J. T. Borenstein, “Biodegradable Microfluidics,” Adv. Mater., Vol.16, No.22, pp. 2007-2012, 2004.
- [27] S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Patterning cells and their environments using multiple laminar fluid flows in capillary networks,” PNAS, Vol.96, pp. 5545-5548, 1999.
- [28] S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, “Subcellular positioning of small molecules,” Nature, Vol.411, No.28, p. 1016, 2001.
- [29] M. Ikeuchi and K. Ikuta, “The Membrane Micro Emboss (MeME) Process for Fabricating 3-D Microfluidic Device Formed from Thin Polymer Membrane,” µTAS 2006, pp. 693-695, 2006.
- [30] K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B, Vol.23, No.4, pp. 1487-1490, 2005.
- [31] K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sensor and Actuators A, 130-131, pp. 387-392, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2007 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.