JRM Vol.19 No.5 pp. 535-543
doi: 10.20965/jrm.2007.p0535


Fabrication of Cell-Adhesion Surface and Arteriole Model by Photolithography

Fumihito Arai*, Takuma Nakano*, Mika Tada*, Yu-Ching Lin*,
Seiichi Ikeda**, Tomoyuki Uchida**, Hiroyuki Oura**,
Toshio Fukuda**, Takehisa Matsuda***, and Makoto Negoro****

*Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

**Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

***Kanazawa Institute of Technology, 3-1 Yasukaho, Hakusan, Ishikawa 924-0838, Japan

****Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan

March 20, 2007
May 24, 2007
October 20, 2007
endothelial cell, photolithography, biology, blood vessel, regenerative medicine
We have been developing scaffolds of three-dimensional (3D) synthetic vascular prosthesis in tailor-made. Human umbilical vein endothelial cells (HUVECs) attached on the inner surface of the scaffold have anticoagulant effects. Asperity structures of the inner surface are important to cell adhesion. It is important to quantify the inner surface asperity condition of the scaffold by observing HUVECs behavior and morphology. For this purpose, we recreated the inner surface profile of the scaffold on a poly(dimethilsiloxane) (PDMS) substrate by microfabrication. We made semiround convex patterns of resist that had 8 µm in diameter and 5 µm high using photolithography, and the concave pattern on the PDMS substrate by printing. We observed HUVECs adhering to the PDMS substrate having concave pattern on it surface. The distribution density of the concaves of the tested pattern is 1600 /mm2 or 40,000 in a 25 mm2 area. In addition, we fabricated an arteriole model by photolithography, creating an arteriole tube model that had 1.1 cm long and 300-400 µm in diameter. We confirmed that the arteriole model had no leakage using a methylene blue solution flow in the channel.
Cite this article as:
F. Arai, T. Nakano, M. Tada, Y. Lin, S. Ikeda, T. Uchida, H. Oura, T. Fukuda, T. Matsuda, and M. Negoro, “Fabrication of Cell-Adhesion Surface and Arteriole Model by Photolithography,” J. Robot. Mechatron., Vol.19 No.5, pp. 535-543, 2007.
Data files:
  1. [1] L. G. Griffith and G. Naughton, “Tissue Engineering – Current Challenges and Expanding Opportunities,” Science, Vol.295, pp. 1009-1014, 2002.
  2. [2] R. Langer and J. P. Vacanti, “Tissue Engineering,” Science, Vol.260, No.5110, pp. 920-926, 1993.
  3. [3] T. Matsuda, “Recent Progress of Vascular Graft Engineering in Japan,” Artificial Organs, Vol.28, No.1, pp. 64-71, 2004.
  4. [4] H. Sonoda, K. Takamizawa, Y. Nakayama, H. Yasui, and T. Matsuda, “Coaxial double-tubular compliant arterial graft prosthesis: time-dependent morphogenesis and compliance changes after implantation,” J. Biomed. Mater. Res. A, 65(2), pp. 170-181, 2003.
  5. [5] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, K. Irie, and I. Takahashi, “Patient-tailored cerebral arterial model for simulating neurovascular intervention,” Trans. Jpn. Soc. Mech. Eng., C 72, pp. 2601-2607, 2005.
  6. [6] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, K. Irie, and I. Takahashi, “An In Vitro Patient-Tailored Model of Human Cerebral Artery for Simulating Endovascular Intervention,” MICCAI 2005, LNCS 3749, pp. 925-932, 2005.
  7. [7] L.Wu, D. Jing, and J. Ding, “A “room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds,” Biomaterials, Vol.27, pp. 185-191, 2006.
  8. [8] J. Gao, P.M. Crapo, and Y.Wang, “Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering,” Tissue Engineering, Vol.12, No.4, pp. 917-925, 2006.
  9. [9] P. X. Ma and J-W.Choi, “Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network,” Tissue Engineering, Vol.7, No.1, pp. 23-33, 2001.
  10. [10] W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds,” Tissue Engineering, Vol.8, No.1, pp. 43-52, 2006.
  11. [11] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science, Vol.276, No.30, 1997.
  12. [12] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft Lithography in Biology and Biochemistry,” Annu. Rev. Biomed. Eng., 3, pp. 335-373, 2001.
  13. [13] A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Micro scale technologies for tissue engineering and biology,” PANS, Vol.103, No.8, pp. 2480-2487, 2006.
  14. [14] S. N. Bhatia, M. L. Yarmush, and M. Toner, “Controlling cell interactions by micropatterning in co-cultures: Hepatocytes and 3T3 fibroblasts,” Journal of Biomedical Materials Research, Vol.34, pp. 189-199, 1997.
  15. [15] A. Tourovskaia, X. F-Masot, and A. Folch, “Differentiation-on-achip: A microfluidic platform for long-term cell culture studies,” Lab on a Chip, 5, pp. 14-19, 2005.
  16. [16] X. Zhu, K. L. Mills, P. R. Peters, J. H. Bahng, E. H. Liu, J. Shim, K. Naruse, M. E. Csete, M. D. Thouless, and S. Takayama, “Fabrication of reconfigurable protein matrices by cracking,” nature materials, Vol.4, No.5, pp. 403-406, 2005.
  17. [17] M. T. Lam, S. Sim, X. Zhu, and S. Takayama, “The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes,” Biomaterials, 27, pp. 4340-4347, 2006.
  18. [18] K. Itoga, M. Yamato, J. Kobayashi, A. Kikuchi, and T. Okano, “Cell micropatterning using photopolymerization with a liquid crystal device commercial projector,” Biomaterials, 25, pp. 2047-2053, 2004.
  19. [19] M. S.Widmer, G. R. D. Evans, K. Brandt et al., “Proceedings of the 1997 Summer Bioengineering Conference, Vol.35,” The American Society for Mechanical Engineers, 1997.
  20. [20] W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama, “Computerized microfluidic cell culture using elastomeric channels and Braille displays,” PNAS, Vol.101, No.45, pp. 15861-15866, 2004.
  21. [21] H. Inoguchi, T. Tanaka, Y. Maehara, and T. Matsuda, “The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft,” Biomaterials, Vol.28, pp. 486-495, 2007.
  22. [22] N. Futai, W. Gu, and S. Takayama, “Rapid Prototyping of Microstructures eith Bell-Shaped Cross-Sections and Its Application to Deformation-Based Microfluidic Valves,” Adv. Mater., Vol.16, No.15, pp. 1320-1323, 2004.
  23. [23] J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, “Microfabrication Technology for Vascularized Tissue Engineering,” Biomedical Microdevices, Vol.4, No.3, pp. 167-175, 2002.
  24. [24] E. Leclerc, K. S. Furukawa, F.Miyata, Y. Sakai, and T. Fujii, “Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications,” Biomaterials, 25, pp. 4683-4690, 2004.
  25. [25] C. J. Bettinger, E. J. Weinberg, K. M. Kulig, J. P. Vacanti, Y. Wang, J. T. Borenstein, and R. Langer, “Three-Dimensional Microfluidic Tissue-Engineering Scaffolds Using a Flexible Biodegradable Polymer,” Adv. Mater., 18, pp. 165-169, 2006.
  26. [26] K. R. King, C. C. J. Wang, M. R. Kaazempur-Mofrad, J. P. Vacanti, and J. T. Borenstein, “Biodegradable Microfluidics,” Adv. Mater., Vol.16, No.22, pp. 2007-2012, 2004.
  27. [27] S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Patterning cells and their environments using multiple laminar fluid flows in capillary networks,” PNAS, Vol.96, pp. 5545-5548, 1999.
  28. [28] S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, “Subcellular positioning of small molecules,” Nature, Vol.411, No.28, p. 1016, 2001.
  29. [29] M. Ikeuchi and K. Ikuta, “The Membrane Micro Emboss (MeME) Process for Fabricating 3-D Microfluidic Device Formed from Thin Polymer Membrane,” µTAS 2006, pp. 693-695, 2006.
  30. [30] K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B, Vol.23, No.4, pp. 1487-1490, 2005.
  31. [31] K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sensor and Actuators A, 130-131, pp. 387-392, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 10, 2024