single-rb.php

JRM Vol.19 No.5 pp. 524-527
doi: 10.20965/jrm.2007.p0524
(2007)

Paper:

Liquid Crystal Actuator Using Nematic π-Cell

Yoshitaka Mieda and Katsushi Furutani

Department of Advanced Science and Technology, Toyota Technological Institute, 12-1 Hisakata 2-chome, Tempaku-ku, Nagoya 468-8511, Japan

Received:
March 26, 2007
Accepted:
May 8, 2007
Published:
October 20, 2007
Keywords:
liquid crystals, actuator, π-cell, back flow, manipulation
Abstract

We propose a liquid crystal actuator using the backflow effect in the nematic π-cell in which a unidirectional flow is generated after the electric field is removed. Applying rectangular AC voltage continuously drives dispersed objects in the π-cell in the direction of rubbing. Using this actuator, we drive microspheres and a film. The drive velocity of dispersed objects depends on the amplitude and frequency of applied voltage.

Cite this article as:
Yoshitaka Mieda and Katsushi Furutani, “Liquid Crystal Actuator Using Nematic π-Cell,” J. Robot. Mechatron., Vol.19, No.5, pp. 524-527, 2007.
Data files:
References
  1. [1] W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. Krüger, M. Lösche, and F. Kremer, “Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers,” Nature (London), 410, pp. 447-450, 2001.
  2. [2] Y. Yusuf, Y. Ono, Y. Sumisaki, P. E. Cladis, H. R. Brand, H. Finkelmann, and S. Kai, “Swelling dynamics of liquid crystal elastomers swollen with low molecular weight liquid crystals,” Phys. Rev. E, 69, pp. 021710-1-9, 2004.
  3. [3] A. Jákli, “Electrically induced flows in ferroelectric liquid crystal films,” Mol. Cryst. Liq. Cryst., Vol.292, pp. 293-300, 1997.
  4. [4] M. Kawasaki, H. Kikuchi, and T. Kajiyama, “Micro-actuating functions induced by electromechanical effect of ferroelectric liquid crystal,” Proc. of the 1996 Japan Liquid Crystal Society annual meeting, 1B01, pp. 35-36, Fukuoka (unpublished).
  5. [5] S. Chono, T. Tsuji, and T. Kurasa, “Experimental Study on Liquid Crystal Actuators,” Proc. of Mechanical Engineering Congress 2004 Japan, 2, pp. 207-208, Sapporo (unpublished).
  6. [6] Y. Mieda and K. Furutani, “Two-dimensional micromanipulation using liquid crystals,” Appl. Phys. Lett., 86, pp. 101901/1-3, 2005.
  7. [7] Y. Mieda and K. Furutani, “Microsphere Manipulation Using Ferroelectric Liquid Crystals,” Phys. Rev. Lett., 95, p. 177801, 2005.
  8. [8] P. J. Bos and K. R. Koehler/Beran, “The pi-cell: a fast liquid-crystal optical switching device,” Mol. Cryst. Liq. Cryst., 113, pp. 329-339, 1984.
  9. [9] P. Pieranski, F. Brochard, and E. Guyon, “Static and dynamic behavior of a nematic liquid crystal in a magnetic field Part II: Dynamics,” J. Phys. (Paris), Vol.34, pp. 35-48, 1973.
  10. [10] M. G. Clark and F. M. Leslie, “A calculation of orientational relaxation in nematic liquid crystals,” Proc. R. Soc. Lond. A., Vol.361, pp. 463-485, 1978.
  11. [11] W. H. de Jue, “Physical Properties of Liquid Crystalline Materials,” Gordon & Breach, 1980.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 01, 2021