single-rb.php

JRM Vol.19 No.5 pp. 512-518
doi: 10.20965/jrm.2007.p0512
(2007)

Paper:

Fabrication of FIB-CVD Nanotemperature Sensor Probe for Local Temperature Sensing in Water Environments

Haitham ElShimy*, Masahiro Nakajima*, Yoshiaki Imaizumi*,
Fumihito Arai**, and Toshio Fukuda*

*Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

**Department of Bioengineering and Robotics, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Received:
May 30, 2007
Accepted:
July 31, 2007
Published:
October 20, 2007
Keywords:
focused ion beam, chemical vapor deposition, water environment, local temperature, nano-sensor probe
Abstract
We fabricated a nanotemperature sensor probe using focused ion beam chemical vapor deposition (FIB-CVD) of tungsten over atomic force microscope (AFM) cantilevers, to be used in local sensing temperature distribution in local area. We present the fabrication approach & modifications for making this sensor probe capable of sensing temperature distributions not only in air but in water environment as well. The sensor probe was calibrated in water using the hot stage of an environmental scanning electron microscope (ESEM). Experimental results demonstrated positive characteristics of the temperature coefficient of resistance (TCR). We also illustrate the response of the sensor to sudden changes in surrounding media. The characteristics of this sensor probe were compared to previously reported temperature sensing devices. The comparison verifies that our sensor is relatively uncomplicated and reliable in fabrication. The capability of sensing temperature in water enables our sensor to be used in a wide range of bio-applications, especially in studying single-cell thermogenesis.
Cite this article as:
H. ElShimy, M. Nakajima, Y. Imaizumi, F. Arai, and T. Fukuda, “Fabrication of FIB-CVD Nanotemperature Sensor Probe for Local Temperature Sensing in Water Environments,” J. Robot. Mechatron., Vol.19 No.5, pp. 512-518, 2007.
Data files:
References
  1. [1] R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, and S. Matsui, Nuclear Instr. & Methods in Phy. Research, B 232, pp. 362-366, 2005.
  2. [2] F. Arai, C. Ng, and T. Fukuda, “Ultra-Small Site Temperature Sensing by Carbon Nanotube Thermal Probes,” IEEE-Nano 2004.
  3. [3] H. M. ElShimy, F. Arai, and T. Fukuda, “Three-Dimensional Nano Temperature Sensors Fabricatied using FIB-CVD,” IEEE-Nano 2006.
  4. [4] R. Kometani, T. Morita, K. Watanabe, T. Hoshino, K. Kondo, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, and S. Matsui, J. Vac. Sci. Technol., B 22, p. 257, 2004.
  5. [5] R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, and S. Matsui, J. Appl. Phys., 43 (10), p. 7187, 2004.
  6. [6] R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, and S. Matsui, J. Appl. Phys., 42 (Pt.1, No.6B), p. 4107, 2003.
  7. [7] V. T. S. Wong and W. J. Li, “Bulk carbon nanotubes sensing element for temperature and anemometry micro sensing,” Proc. Int. Conf. on IEEE MEMS, pp. 41-44, 2003.
  8. [8] Y. Gao and Y. Bando, “Carbon nanothermometer containing gallium,” Nature, Vol.415, p. 599, February, 2002.
  9. [9] T. W. Ebbesen, H. J. Lezec, H. Hiura, H. F. Ghaemi, and T. Thio, “Electrical conductivity of individual carbon nanotubes,” Nature, Vol.382, pp. 54-56, July, 1996.
  10. [10] M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic Detection of Thermogenesis in a Single HeLa Cell,” Biophysical Lett., 92 (6), pp. L46-L48.
  11. [11] Y. C. Lin, Y. Yamanishi, and F. Arai, “On-chip Temperature Sensing and Control for Cell Immobilization,” Proc. IEEE Int. Conf. on Nano/Micro Eng. and Molecular Sys., pp. 659-663, 2007.
  12. [12] S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng., 11, pp. 287-300, 2001.
  13. [13] T. Morita, K. Nakamatsu, K. Kanda, and Y. Haruyama, “Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol., B 22(6), p. 3137, 2004.
  14. [14] K. Edingera, T. Gotszalk, and I. W. Rangelow, “Novel high resolution scanning thermal probe,” J. Vac. Sci. Technol., B 19(6), p. 2856, 2001.
  15. [15] J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nuclear Inst. and Methods in Phy. Res. (B), Vol.206, pp. 472-477.
  16. [16] K. Nakamatsu, J. Igaki, M. Nagase, T. Ichihashi, and S. Matsui, “Mechanical characteristics of tungsten-containing carbon nanosprings grown by FIB-CVD,” Microelectronic Eng., Vol.83, 4-9, pp. 808-810.
  17. [17] S. Matsui, “Focused-ion-beam deposition for 3-D nanostructure fabrication,” Nuclear Inst. and Methods in Phy. Res. (B), Vol.257, Issues 1-2, pp. 758-764.
  18. [18] R. Kometani, R. Funabiki, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, Y. Ochiai, and S. Matsui, “Cell wall cutting tool and nano-net fabrication by FIB-CVD for subcellular operations and analysis,” Microelectronic Eng., Vol.83, Issues 4-9, pp. 1642-1645.
  19. [19] A. M. Donald, and C. Laboratory, “The use of environmental scanning electron microscopy for imaging wet and insulating materials,” Nature Materials, Vol.2, pp. 511-516, 2003.
  20. [20] S. S. Saliterman, “BioMEMS and Medical Microdevices,” SPIE/WILEY, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024