single-rb.php

JRM Vol.18 No.6 pp. 827-830
doi: 10.20965/jrm.2006.p0827
(2006)

Letter:

Novel Computed Tomography for Reconstructing Three-Dimensional Phase Contrast Images of Single Living Cells

Yusuke Inoue*, Ichirou Ishimaru**, Toshiki Yasokawa**,
Katsumi Ishizaki**, and Makoto Yoshida**

*Fuji Xerox Corporation, 2-17-22 Akasaka, Minato-ku, Tokyo 107-0052, Japan

**Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan

Received:
March 31, 2006
Accepted:
June 2, 2006
Published:
December 20, 2006
Keywords:
phase contrast, single living cells, computed tomography, optical tweezers
Abstract

We proposed using spectroscopy-tomography of single cells as a diagnostic tool for improving early cancer detection and treatment. This technology potentially obtains the 3D distribution of cellular components at high spatial resolution. We used spectroscopy-tomography to generate and analyze a series of cross-sectional images of a borosilicate glass microsphere 10µm in diameter, easily determining the distribution of internal submicron defects in the microsphere. We also used this to estimate the 3-dimensional refractive index distribution in a single human breast cancer cell. The nucleus, which has a high refractive index, is clearly distinguishable.

Cite this article as:
Yusuke Inoue, Ichirou Ishimaru, Toshiki Yasokawa,
Katsumi Ishizaki, , and Makoto Yoshida, “Novel Computed Tomography for Reconstructing Three-Dimensional Phase Contrast Images of Single Living Cells,” J. Robot. Mechatron., Vol.18, No.6, pp. 827-830, 2006.
Data files:
References
  1. [1] T. Yasokawa, I. Ishimaru, F. Oohira, R. Hyodo, H. Kobayashi, A. Hayashi, Y. Inoue, and K. Ishizaki, “Proposal of spectroscopytomography of single-cell,” Optomechatronic Micro/Nano Components, Devices, and Systems, Proceedings of SPIE, Vol.5604, pp. 108-117, 2004.
  2. [2] A. Hayashi, F. Oohira, I. Ishimaru, S. Hata, S. Kaio, H. Kobayashi, and M. Minami, “Experimental Confirmation of the Variable Phase-Contrast Microscope Using Piezo-Electric Actuator,” Proceedings of ASME 2002 Japan-USA Symposium on Flexible Automation (2002JUSFA),Vol.III, pp. 1321-1324, 2002.
  3. [3] R. Hyoudou, S. Kaio, F. Oohira, A. Hayashi, and I. Ishimaru, “Proposal of variable-phase contrast microscope for nano-geometry measurement,” Optics Japan 2002, Extended Abstracts of Optics Japan 2002 The Optical Society of Japan, pp. 216-217, 2002.
  4. [4] A. Hayashi, F. Oohira, I. Ishimaru, S. Hata, R. Hyodo, S. Kaio, and M. Minami, “Nano-Micro Meter Size Geometry Measurement using Variable Phase-Contrast Microscope with Piezo-Electric Actuator,” Proc. of 2nd Japan-China Workshop on Multidisciplinary Researches in Engineering, pp. 194-199, 2003.
  5. [5] H. Kobayashi, I. Ishimaru, G. Hashiguchi, F. Oohira, S. Kaio, and A. Hayashi, “A Proposal of Variable Phase-Contrast Microscope for Nano Geometry Measurement,” Proc. of ASME 2002 Japan-USA Symposium on Flexible Automation (2002JUSFA), Vol.III, pp. 1317-1320, 2002.
  6. [6] M. Yoshida, I. Ishimaru, H. Kobayashi, K. Ishizaki, R. Hyoudou, T. Yasokawa, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “Spectroscopy-Tomography of Living Single-Cells –Rotational Control Method of Single-Cells by Proximal Two-Beam Optical Tweezers–,” Complex Medical Engineering-CME2005, p. 193, 2005.
  7. [7] F. Zernike, “How I Discovered Phase Contrast,” Science, 121, p. 345, 1955.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 24, 2021