Paper:
A Finite Element Scheme for Impact Force Prediction of Robotic Mechanisms
Daigoro Isobe*, and Yoshiaki Moriya**
*Department of Engineering Mechanics and Energy, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan
**Toyota Motors Co., 523 Toyota, Toyota-shi, Aichi 471-0826, Japan
- [1] D. Isobe, and Y. Ishii, “Attitude Determination and Motion Planning of Robotic Architecture in View of Its Structural Strength,” Journal of the Robotics Society of Japan, Vol.22, No.1, pp. 75-82, 2004.
- [2] “Textbook of Workshop on New Techniques on Vibration,” Impact Measurements, JSME No.04-76, 2004.
- [3] JSME Mechanical Engineers’ Concise Handbook, 6th Edition, 1990.
- [4] Y. Fujii, D. Isobe, S. Saito, H. Fujimoto, and Y. Miki, “A Method for Determining the Impact Force in Crash Testing,” Mechanical Systems and Signal Processing, Vol.14, No.6, pp. 959-965, 2000.
- [5] N. Kikuchi, and J. T. Oden, “Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,” SIAM Studies in Applied Mathematics, Philadelphia, 1988.
- [6] Z. H. Zhong, “Finite Element Procedures for Contact-Impact Problems,” Oxford University Press, New York, 1993.
- [7] D. J. Benson, and J. O. Hallquist, “A Single Surface Contact Algorithm for the Post-Buckling Analysis of Shell Structures,” Computer Methods in Applied Mechanics and Engineering, Vol.78, pp. 141-163, 1990.
- [8] A. L. Florence, P. R. Gefken, and S. W. Kirkpatrick, “Dynamic Plastic Buckling of Copper Cylindrical Shells,” International Journal of Solids and Structures, Vol.27, No.1, pp. 89-103, 1991.
- [9] T. Belytschko, and J. I. Lin, “A Three-Dimensional Impact-Penetration Algorithm with Erosion,” Computers and Structures, Vol.25, pp. 95-104, 1987.
- [10] G. Camacho, and M. Ortiz, “Adaptive Lagrangian Modelling of Ballistic Penetration of Metallic Targets,” Computer Methods in Applied Mechanics and Engineering, Vol.142, pp. 269-301, 1997.
- [11] H. Takeuchi, S. Goma, A. Sano, and H. Fujimoto, “Modeling of Soft Deformable Object Operating for Interactive Surgery Simulation,” Transactions of the Virtual Reality Society of Japan, Vol.8, No.2, pp. 137-144, 2003.
- [12] Y. Kuroda, M. Nakao, T. Kuroda, H. Oyama, M. Komori, and T. Matsuda, “Interaction Model between Elastic Objects for Organorgan Contact Simulation,” Transactions of the Virtual Reality Society of Japan, Vol.8, No.2, pp. 155-162, 2003.
- [13] J. A. Zukas, “High Velocity Impact Dynamics,” Wiley, New York, 1990.
- [14] D. Isobe, and K. M. Lynn, “Structural Collapse Analysis of Steel Framed Structure due to Aircraft Collision,” Journal of Structural and Construction Engineering, AIJ, No.579, pp. 39-46, 2004.
- [15] Y. Toi, “Shifted Integration Technique in one-dimensional plastic collapse analysis using linear and cubic finite elements,” International Journal for Numerical Methods in Engineering, Vol.31, pp. 1537-1552, 1991.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2006 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.