Development Report:
Evolutionary Learning Acquisition of Optimal Joint Angle Trajectories of Flexible Robot Arm
Hiroyuki Kojima, and Takahiro Hiruma
Department of Mechanical System Engineering, Gunma University, 1-5-1 Tenjincho, Kiryu, Gunma 376-8515, Japan
- [1] W. J. Book, O. Maizza Neto, and D. E. Whitney, “Feedback control of two beam, two joint systems with distributed flexibility,” Journal of Dynamic Systems, Measurement, and Control, Vol.97, No.4, pp. 424-431, 1975.
- [2] Y. Sakawa, and Z. H. Luo, “Modeling and control of coupled bending and torsional vibrations of flexible beams,” IEEE Transactions on Automatic Control, Vol.34, No.9, pp. 970-977, 1989.
- [3] Z. H. Luo, “Direct strain feedback control of flexible robot arms; new theoretical and experimental results,” IEEE Transactions on Automatic Control, Vol.38, No.11, pp. 1610-1622, 1993.
- [4] R. L. Wells, J. K. Schueller, and J. Tlusty, “Feedforward and feedback control of a flexible robotic arm,” IEEE Control Systems Magazine, Vol.10, No.1, pp. 9-15, 1990.
- [5] Y. Morita, H. Ukai, and H. Kando, “Robust trajectory tracking control of elastic robot manipulators,” Journal of Dynamic Systems, Measurement, and Control, Vol.119, No.4, pp.727-735, 1997.
- [6] D. S. Kwon, and W. J. Book, “A time-domain inverse dynamic tracking control of a single-link flexible manipulator,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol.116, pp. 193-200, 1994.
- [7] D. Knjazew, “OmeGA (A Component genetic algorithm for solving permutation and scheduling problems),” Kluwer Academic Publishers, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2006 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.