JRM Vol.17 No.4 pp. 475-482
doi: 10.20965/jrm.2005.p0475


Field Emission of Individual Carbon Nanotubes and its Improvement by Decoration with Ruthenium Dioxide Super-Nanoparticles

Pou Liu*, Fumihito Arai*, Lixin Dong**,
Toshio Fukuda*, Tsuneyuki Noguchi***,
and Katsuyoshi Tatenuma***

*Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

**Institute of Robotics and Intelligent Systems, Swiss Federal Institute of Technology (ETH), CLA H 17.2, ETH-Zentrum, Tannenstrasse 3, CH-8092 Zürich, Switzerland

***KAKEN Inc., Hori-cho, Mito, Ibaraki 310-0903, Japan

May 20, 2005
June 14, 2005
August 20, 2005
carbon nanotube, super-nanoparticles, field emission, nanorobotic manipulation, electron-beam-induced deposition

To reduce energy consumption by carbon nanotubes (CNTs) used as emitters in applications such as field emission display, and electron-beam-induced deposition (EBID), nano-sized metallic super-nanoparticles of ruthenium dioxide are decorated on the surface of CNTs. We studied field emission properties and found that the work voltage is 23% lower than that of as-grown CNT emitters. To obtain conductive nanostructures, electron-beam-induced deposition using an individual multiwalled carbon nanotube (MWNT) emitter decorated with ruthenium dioxide is realized by introducing tungsten hexacarbonyl (W(CO)6) as a precursor. The tungsten mass in deposits is rich at 98.89% as determined by energy x-ray dispersive spectrometer (EDS). We thus obtained nearly pure-metal deposits.

Cite this article as:
Pou Liu, Fumihito Arai, Lixin Dong,
Toshio Fukuda, Tsuneyuki Noguchi, and
and Katsuyoshi Tatenuma, “Field Emission of Individual Carbon Nanotubes and its Improvement by Decoration with Ruthenium Dioxide Super-Nanoparticles,” J. Robot. Mechatron., Vol.17, No.4, pp. 475-482, 2005.
Data files:
  1. [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol.354, pp. 56-58, 1991.
  2. [2] N. S. Lee et al., “Application of carbon nanotubes to field emission displays,” Diamond and Related Materials, Vol.10, pp. 265-270, 2001.
  3. [3] E. C. Dickey, C. A. Grimes et al., “Visible photoluminescence from ruthenium-doped multiwall carbon nanotubes,” Appl. Phys. Lett., Vol.79, pp. 4022-4024, 2001.
  4. [4] L. Dong, F. Arai, and T. Fukuda, “Electron-beam-induced deposition with carbon nanotube emitters,” Appl. Phys. Lett., Vol.81, pp. 1919-1921, 2002.
  5. [5] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr, S. Washburn, and R. Superfine, “Bending and buckling of carbon nanotubes under large strain,” Nature, Vol.389, pp. 582-584, 1997.
  6. [6] E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, Vol.277, pp. 1971-1975, 1997.
  7. [7] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, Vol.287, pp. 637-640, 2000.
  8. [8] P. G. Collins, and A. Zettl, “A simple and robust electron beam source from carbon nanotubes,” Appl. Phys. Lett., Vol.69, pp. 1969-1971, 1996.
  9. [9] Y. Wei, C. G. Xie, K. A. Dean, and B. F. Coll, “Stability of carbon nanotubes under electric field studied by scanning electron microscopy,” Appl. Phys. Lett., Vol.79, pp. 4527-4529, 2001.
  10. [10] K. A. Dean, and B. R. Chalamala, “Field emission microscopy of carbon nanotube caps,” J. Appl. Phys., Vol.85, pp. 3832-3836, 1999.
  11. [11] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire,” Science, Vol.269, pp. 1550-1553, 1995.
  12. [12] B. C. Satishkumar, E. M. Vogl, A. Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D, Vol.29, pp. 3173-3176, 1996.
  13. [13] Y. Zhang, and H. Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes,” Appl. Phy. Lett., Vol.77, pp. 3015-3017, 2000.
  14. [14] L. Jiang, and L. Gao, “Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles,” Carbon, Vol.41, pp. 2923-2929, 2003.
  15. [15] H. W. P. Koops et al., “Direct deposition of 10-nm metallic features with the scanning tunneling microscope,” J. Vac. Sci. Technol. B, Vol.6, pp. 1877-1880, 1988.
  16. [16] P. G. Collins, and A. Zettl, “Unique characteristics of cold cathode carbon-nanotube-matrix field emitters,” Phys. Rev. B, Vol.55, pp. 9391-9399, 1997.
  17. [17] U. Hübner, R. Plontke, M. Blume, A. Reinhardt, and H. W. P. Koops, “On-line nanolithography using electron beam-induced deposition technique,” Microelectronic Engineering, Vol.57, pp. 953-958, 2001.
  18. [18] H. W. P. Koops, C. Schössler, A. Kaya, and M. Weber, “Conductive dots, wires, and supertips for field electron emitters produced by electron-beam induced deposition on samples having increased temperature,” J. Vac. Sci. Technol. B, Vol.14, pp. 4105-4109, 1996.
  19. [19] S. Matsui, and K. Mori, “New selective deposition technology by electron beam induced surface reaction,” J. Vac. Sci. Technol. B, Vol.4, pp. 299-304, 1986.
  20. [20] T. Fukuda, F. Arai, and L. Dong, “Assembly of Nanodevices with carbon nanotubes through nanorobotic manipulations,” Proc. of the IEEE, Vol.91, pp. 1803-1818, 2003.
  21. [21] F. Arai, P. Liu, L. X. Dong, M. Nakajima, and T. Fukuda, “Electronbeam-induced deposition of conductive nanostructures with carbon nanotube emitters,” Proc. of IEEE-NANO 2003 (CD-Rom), Aug. 11-14, San Francisco, U.S.A., 2003.
  22. [22] R. H. Fowler, and L. Nordheim, “Electron emission in intense electric fields,” Proc. Royal Soci. London, Vol.119, pp.173-181, 1928.
  23. [23] L. X. Dong, F. Arai, and T. Fukuda, “Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulations,” IEEE/ASME Trans. on Mechatronics, Vol.9, pp. 295-298, 2003.
  24. [24] K. M. Glassford, and J. R. Chelikowsky, “Electronic and structural properties of RuO2,” Phys. Review B, Vol.47, pp. 1732-1741, 1993.
  25. [25] P. C. Hoyle, J. R. A. Cleaver, and H. J. Ahmed, “Electron beam induced deposition from W(CO)6 at 2 to 20 keV and its applications,” J. Vac. Sci. Technol. B, Vol.14, pp. 662-673, 1996.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021