JRM Vol.16 No.6 pp. 597-603
doi: 10.20965/jrm.2004.p0597


Field Emission Properties of Individual Carbon Nanotubes in Nanorobotic Manipulation and Electron-Beam-Induced Deposition

Fumihito Arai*, Pou Liu*, Lixin Dong**,
and Toshio Fukuda*

*Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

**Institute of Robotics and Intelligent Systems, Swiss Federal Institute of Technology, Tannenstrasse 3, ETH Zentrum CLA H 17.2, CH-8092 Zürich, Switzerland

July 20, 2004
September 13, 2004
December 20, 2004
carbon nanotubes, field emission, nano-robotic manipulation, electron-beam-induced deposition
Field emission properties of individual multi-walled carbon nanotubes (MWNTs) were studied in nanorobotic manipulation and electron-beam-induced deposition (EBID). Nanotube emitters are constructed by picking up and assembling individual nanotubes on a commercially available atomic force microscope (AFM) cantilever or a tungsten probe. The relationship between field emission current and interelectrode distance was obtained by changing the distance between the tip of the nanotube emitter and the counterpart anode, which can be potentially applied as the principle for an approaching sensor to detect nanometer scale distance by observing field emission current in real time. Field emission current on a microampere scale from a CNT emitter was shown to be strong enough for EBID without obviously degrading emitters. Deposit topology was related to current density or the emitter shape, suggesting that information on emitter geometry could be obtained from EBID deposits. Energy dispersive X-ray spectrometry (EDS) analysis of deposits from W(CO)6 showed that the tungsten mass exceeds 80% on the average among compositions. Much higher voltage may degrade the emitter, and saturated current may be used to adjust the emitter length in a controlled way.
Cite this article as:
F. Arai, P. Liu, L. Dong, and T. Fukuda, “Field Emission Properties of Individual Carbon Nanotubes in Nanorobotic Manipulation and Electron-Beam-Induced Deposition,” J. Robot. Mechatron., Vol.16 No.6, pp. 597-603, 2004.
Data files:
  1. [1] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Nordlander, P. Tomanek, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire,” Science, Vol.269, pp. 1550-1553, 1995.
  2. [2] W. A. de Heer, A. Châtelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, Vol.270, pp. 1179-1180, 1995.
  3. [3] Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, “Conical beams from open nanotubes,” Nature, Vol.389, pp. 554-555, 1997.
  4. [4] P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube Nanodevice,” Science, Vol.278, pp. 100-103, 1997.
  5. [5] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, Vol.283, pp. 512-514, 1999.
  6. [6] W. Zhu, Z. C. Bower, O. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett., Vol.75, pp. 873-875, 1999.
  7. [7] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, “In situ-grown carbon nanotube array with excellent field emission characteristics,” Appl. Phys. Lett., Vol.76, pp. 3813-3815, 2000.
  8. [8] Y. Saito, K. Hamaguchi, T. Nishino, K. Hata, K. Tohji, A. Kasuya, and Y. Nishina, “Field Emission Patterns from Single-Walled Carbon Nanotubes,” Jpn. J. Appl. Phys., Vol.36, pp. L1340-L1342, 1997.
  9. [9] Y. Saito, K. Hata, T. Murata, and J. Jan, “Field emission patterns originating from pentagons at tip of a cabon nanotube,” Appl. Phys., Vol.39, pp. L271-L272, 2000.
  10. [10] R. H. Fowler, and L. Nordheim, “Electron emission in intense electric fields,” Proc. Royal Soci. London, Vol.119, pp. 173-181, 1928.
  11. [11] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, Vol.287, pp. 637-640, 2000.
  12. [12] L. X. Dong, F. Arai, and T. J. Fukuda, “3-D nanorobotic manipulations of nanometer scale objects,” Robo. Mech., Vol.13, pp. 534-541, 2001.
  13. [13] L. X. Dong, F. Arai, and T. Fukuda, “Nanoassembly of Carbon Nanotubes through Mechanochemical Nanorobotic Manipulations,” Jpn. J. Appl. Phys, Vol.42, No.1, pp. 295-298, 2003.
  14. [14] Y. Saito, S. Uemura, and K. Hamaguchi, “Cathode ray tube lighting elements with carbon nanotube field emitters,” Jpn. J. Appl. Phys., Vol.37, pp. L346-348, 1998.
  15. [15] R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, and O. Zhou, “Application of carbon nanotubes as electrodes in gas discharge tubes,” Appl. Phys. Lett., Vol.76, pp. 1668-1670, 2000.
  16. [16] H. Sugie, M. Tanemura, V. Filip, K. Lwata, K. Takahashi, and F. Okuyama, “Carbon nanotubes as electron source in an X-ray tube,” Appl. Phys. Lett., Vol.78, pp. 2578-2580, 2001.
  17. [17] L. X. Dong, F. Arai, and T. Fukuda, “Electron-beam-induced deposition with carbon nanotube emitters,” Appl. Phys. Lett., Vol.81, pp. 1919-1921, 2002.
  18. [18] U. Hübner, R. Plontke, M. Blume, A. Reinhardt, and H. W. P. Koops, “On-line nanolithography using electron beam-induced deposition technique,” Microelectronic Engineering, Vol.57, pp. 953-958, 2001.
  19. [19] P. C. Hoyle, J. R. A. Cleaver, and H. Ahmed, “Electron beam induced deposition from W(CO)6 at 2 to 20keV and its application,” J. Vac. Sci. Technol. B, Vol.14, pp. 662-673, 1996.
  20. [20] R. Gao, Z. W. Pan, and Z. L. Wang, “Work function at the tips of multiwalled carbon nanotubes,” Appl. Phys. Lett., Vol.78, pp. 1757-1759, 2001.
  21. [21] T. Fukuda, F. Arai, and L. X. Dong, “Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations,” Proc. IEEE, Vol.91, pp. 1803-1818, 2003.
  22. [22] H. W. P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, and K. L. Lee, “Characterization and application of materials grown by electron-beam-induced deposition,” Jpn. J. Appl. Phys., Vol.33, pp. 7099-7107, 1994.
  23. [23] S. Matsui, J. Fujita, M. Komuro, K. Kanada, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B, Vol.18, pp. 3181-3184, 2000.
  24. [24] N. Hamada, S. I. Sawada, and A. Oshiyama, “New one-dimensional conductors: graphitic microtubules,” Phys. Rev. Lett., Vol.68, pp. 1579-1581, 1992.
  25. [25] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral grapheme tubules,” Appl. Phys. Lett., Vol.60, pp. 2204-2206, 1992.
  26. [26] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes,” Nature, Vol.391, pp. 59-62, 1998.
  27. [27] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature, Vol.391, pp. 62-64, 1998.
  28. [28] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr, S. Washburn, and R. Superfine, “Bending and buckling of carbon nanotubes under large strain,” Nature, Vol.389, pp. 582-584, 1997.
  29. [29] E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, Vol.277, pp. 1971-1975, 1997.
  30. [30] F. Arai, P. Liu, L. X. Dong, M. Nakajima, and T. Fukuda, “Electron-Beam-Induced Deposition of Conductive Nanostructures with Carbon Nanotube Emitters,” Proceedings of the 2003 Third IEEE Conference on Nanotechnology, 2003.
  31. [31] P. C. Hoyle, J. R. A. Cleaver, and H. Ahmed, “Electron beam induced deposition from W(CO)6 at 2 to 20keV and its application,” J. Vac. Sci. Technol. B, Vol.14, p. 662, 1996.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2024