Paper:
Study on In-Pipe Corrosion Diagnosis System -Estimation of Corrosion on Screw Parts Using a Surface SH Probe-
Shintaro Sakamoto*, Toshio Fukuda**, Hironori Yui**,
Yasuhiro Abe*****, Yasuhisa Hasegawa***,
Futoshi Kobayashi****, and Fumihito Arai**
*Research and Development Center, Shinryo Corporation, 41 Wadai, Tsukuba, Ibaraki 300-4247, Japan
**Department of Micro System Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi 464-8603, Japan
***Department of Mechanical Systems Engineering, Faculty of Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
****Department of Machine and System Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan
*****ForU Corporation Limited, 23/F., The Toy House100 Canton Road, Tsimshatsui, Kowloon, Hong Kong
- [1] M. Ohno, “Ability of the latest facility diagnosis. Piping inspection using an ultrasonic wave, by robot,” Plant Engineer, pp.23-27, 1995.
- [2] Y. Kurosaki et al., “Automatic inspection system for piping corrosion,” Proceedings of The 1st Symposium on Construction Robotics in Japan, pp.379-384, 1990.
- [3] N. Mukai et al., “Automatic Inspection System for Piping Corrosion (Part 1. R&D Concept and System Outline,” Technical Papers of Annual Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan, pp.933-936, 1989.
- [4] S. Sakamoto et al., “Development of a Robot Manipulator for Pipe Flow Detection Using Ultrasonic Wave Echo,” Trans. of the Japan Society of Mechanical Engineers (C), 69-688, pp.3316-3321, 2003.
- [5] S. Iwashita, S. Sakamoto et al., “Control of Parallel-Link Robot Manipulator for Pipe-Flaw Diagnosis,” Trans. of the Japan Society of Mechanical Engineers (C), 69-688, pp.3309-3315, 2003.
- [6] T. Fukuda, S. Sakamoto et al., “In-Pipe Corrosion Diagnosis System (Estimation of the Type and Size of Corrosion Using Two-Dimensional Ultrasonic Flaw Detector),” Trans. of the Japan Society of Mechanical Engineers (C), 68-666, pp.391-397, 2002.
- [7] K. Onda et al., “Development of Automatic Ultrasonic Testing System for Steam Turbine High Temperature Bolt,” Report of CHUBU Electric Power Co., No.85, pp.122-133, 1991.
- [8] G. M. Light and two others, “Stud bolt inspection using ultrasonic cylindrically guided wave technique,” ASME, Vol.26, pp.31-38, 1986.
- [9] Dong-Man Suh et al., “Ultrasonic Inspection of Studs (Bolts) Using Dynamic Predictive Deconvolution and Wave Shaping,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 46, No.2, 1999.
- [10] Y. Ikegaya, “Recent Ultrasonic Probe II SH Wave Probe and its Application,” Non-Destructive Inspection, Vol.52, No.1, pp.3-8, 2003.
- [11] Y. Yanaginuma et al., “Ultrasonic Measurements of Root Gap in Fillet Welded Cruciform Joints by Surface Horizontally Polarized Shear Wave,” Non-Destructive Inspection, Vol.51, No.11, pp. 733-739, 2002.
- [12] M. Takahashi, et al., “Experimental Study of Echo Directivity for Surface SH Wave and SH Wave Angle Probes,” 7th European Conference on Non-Destructive Testing, pp.26-29, 1998.
- [13] The Japanese Society for Non-Destructive Inspection, “Handbook of Non-Destructive Inspection,” pp.231, 1992.
- [14] M. Kasahara et al., “Study on Ultrasonic Testing Techniques Using Grazing SH-Wave,” Proceedings of the 3rd Symposium on Ultrasonic Nondestructive Characterization, pp.129-135, 1996.
- [15] M. Takahashi et al., “Experimental Study of Echo Transmittance of SH Wave,” Non-Destructive Inspection, Vol.45, No.5, pp.343-348, 1996.
- [16] M. Takahashi et al., “Experimental Study of Echo Directivity for Surface SH Wave and SH Wave Angle Probes,” Non-Destructive Inspection, Vol.45, No.9, pp.688-696, 1996.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2004 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.