JDR Vol.18 No.4 pp. 424-435
doi: 10.20965/jdr.2023.p0424


Assessment of Landslide Risks Through a Multi-Disciplinary Approach: A Case Study of Al Hoceima, Northern Morocco

Mohamed El Khattabi*1 ORCID Icon, Jamal El Khattabi*1,† ORCID Icon, Ali Azdimousa*2 ORCID Icon, Pierre Plotto*3, and Gharibi El Khadir*4 ORCID Icon

*1Laboratory of Civil Engineering and Geo-Environment (LGCGE), University of Lille
Bâtiment ESPRIT, Campus Scientifique, Avenue Paul Langevin, Villeneuve-d’Ascq 59650, France

Corresponding author

*2Laboratory of Applied Geosciences (LGA), Faculty of Sciences, Mohammed First University
Oujda, Morocco

Montbonnot-Saint-Martin, France

*4Solid Mineral Chemistry, Applied Chemistry and Environment Laboratory, Faculty of Sciences, Mohammed First University
Oujda, Morocco

October 12, 2022
February 22, 2023
June 1, 2023
landslide, rainfall, geology, hydrochemistry

Landslides are very dangerous phenomena dependent upon several parameters and criteria widespread in Northern Morocco. Their management is complex because of the dangers posed to the population and by the habitat, but also due to the difficulty of remedial actions. To address this, a methodology is needed based on the analysis of land movements through a multidisciplinary approach combining geology, hydrogeochemistry, and geotechnics. This perspective was adopted in this study of landslides in the city of Al Hoceima (Northern Morocco), and in particular on the slope located in front of the Al Hoceima port, which shows a morphology of old landslides, and more recent ones subject to factors of instability or landslides that activate after periods of intense rain. The analysis and interpretation of satellite images reveals a complex morphology, shaped by a geology characterized by tectonic activity and often-altered lithology. From a geotechnical point of view, the latter induces low to medium mechanical characteristics. Inclinometric measurements situate the average depths of the sliding planes at between 15 m and 25 m. The chemical facies of the groundwater is sodium sulphate, sometimes tilting toward chloride-sodium, proof of a leaching of the autochthonous formations (Trias-Lias and Jurassic), to which is added the action of the rising water table. All these factors intervene directly in the destabilization of the slope. These results allow us to establish concrete actions for the stabilization of the slope.

Cite this article as:
M. El Khattabi, J. El Khattabi, A. Azdimousa, P. Plotto, and G. El Khadir, “Assessment of Landslide Risks Through a Multi-Disciplinary Approach: A Case Study of Al Hoceima, Northern Morocco,” J. Disaster Res., Vol.18 No.4, pp. 424-435, 2023.
Data files:
  1. [1] F. Gutiérrez, M. Soldati, F. Audemard, and D. Bălteanu, “Recent advances in landslide investigation: Issues and perspectives,” Geomorphology, Vol.124, Nos.3-4, pp. 95-101, 2010.
  2. [2] M. J. Froude and D. N. Petley, “Global fatal landslide occurrence from 2004 to 2016,” Natural Hazards and Earth System Sciences (NHESS), Vol.18, No.8, pp. 2161-2181, 2018.
  3. [3] C. Domakinis, D. Oikonomidis, and T. Astaras, “Landslide mapping in the coastal area between the strymonic gulf and kavala (Macedonia, Greece) with the aid of remote sensing and geographical information systems,” Int. J. Remote Sens., Vol.29, No.23, pp. 6893-6915, 2008.
  4. [4] J.-C. Huang, S.-J. Kao, M.-L. Hsu, and Y.-A. Liu, “Influence of specific contributing area algorithms on slope failure prediction in landslide modeling,” NHESS, Vol.7, No.6, pp. 781-792, 2007.
  5. [5] D. Petley, “Global patterns of loss of life from landslides,” Geology, Vol.40, No.10, pp. 927-930, 2012.
  6. [6] M.-L. Chen, S.-C. Qi, P.-F. Lv et al., “Hydraulic response and stability of a reservoir slope with landslide potential under the combined effect of rainfall and water level fluctuation,” Environmental Earth Sciences, Vol.80, No.1, Article No.25, 2021.
  7. [7] T.-T. Yu, T.-S. Wang, and Y.-S. Cheng, “Analysis of factors triggering shallow failure and deep-seated landslides induced by single rainfall events,” J. Disaster Res., Vol.10, No.5, pp. 966-972, 2015.
  8. [8] A. S. Muntohar and H.-J. Liao, “Rainfall infiltration: infinite slope model for landslides triggering by rainstorm,” Natural Hazards, Vol.54, pp. 967-984, 2010.
  9. [9] H. Saito, O. Korup, T. Uchida et al., “Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan,” Geology, Vol.42, No.11, pp. 999-1002, 2014.
  10. [10] A. Kumar, A. K. L. Asthana, R. S. Priyanka et al., “Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India,” Geomorphology, Vol.284, pp. 72-87, 2017.
  11. [11] T. Bogaard and R. Greco, “Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds,” NHESS, Vol.18, No.1, pp. 31-39, 2018.
  12. [12] T. Tsuchihara, T. Okuyama, K. Shirahata et al., “Hydrochemical and isotopic investigation to characterize the effect of snowmelt infiltration on groundwater in a snowy landslide area of Japan,” Environmental Earth Sciences, Vol.80, Article No.444, 2021.
  13. [13] P.-Y. Lin and L. L.-Y. Tsai, “A hydrochemical study of Hungtsaiping landslide area, Nantou Taiwan,” Environmental Earth Sciences, Vol.67, pp. 1045-1060, 2012.
  14. [14] T. K. Mebrahtu, A. Banning, E. H. Girmay, and S. Wohnlich, “The effect of hydrogeological and hydrochemical dynamics on landslide triggering in the central highlands of Ethiopia,” Hydrogeology J., Vol.29, pp. 1239-1260, 2021.
  15. [15] H. Rahali, “Improving the reliability of landslide susceptibility mapping through spatial uncertainty analysis: A case study of Al Hoceima, Northern Morocco,” Geoc. Int., Vol.34, pp. 43-77, 2017.
  16. [16] A. Ivčević, V. Statzu, A. Satta, and R. Bertoldo, “The future protection from the climate change-related hazards and the willingness to pay for home insurance in the coastal wetlands of West Sardinia, Italy,” Int. J. of Disaster Risk Reduction, Vol.52, Article No.101956, 2021.
  17. [17] J. Andrieux, “La structure du Rif central. Étude des relations entre la tectonique de compression et les nappes de glissement dans un tronçon de la chaîne alpine,” Editions du Service Géologique du Maroc, 1971 (in French).
  18. [18] A. Michard, A. Chalouan, H. Feinberg et al., “How does the Alpine belt end between Spain and Morocco?,” Bulletin de la Société Géologique de France, Vol.173, No.1, pp. 3-15, 2002.
  19. [19] T. Mourier, “Étude géologique et structurale du Massif des Bokkoya,” Doctorate Thesis, University Paris Sud, 1982 (in French).
  20. [20] J. Galindo-Zaldívar, A. Chalouan, O. Azzouz et al., “Are the seismological and geological observations of the Al Hoceima (Morocco, Rif) 2004 earthquake (M=6.3) contradictory?,” Tectonophysics, Vol.475, No.1, pp. 59-67, 2009.
  21. [21] J. Galindo-Zaldívar, G. Ercilla, F. Estrada et al., “Imaging the growth of recent faults: The case of 2016–2017 seismic sequence sea bottom deformation in the Alboran Sea (Western Mediterranean),” Tectonics, Vol.37, No.8, pp. 2513-2530, 2018.
  22. [22] A. Tahayt, T. Mourabit, A. Rigo et al., “Mouvements actuels des blocs tectoniques dans l’arc Bético-Rifain à partir des mesures GPS entre 1999 et 2005,” Comptes Rendus Geoscience, Vol.340, No.6, pp. 400-413, 2008 (in French).
  23. [23] M. T. Brunetti, S. Peruccacci, M. Rossi et al., “Rainfall thresholds for the possible occurrence of landslides in Italy,” NHESS, Vol.10, No.3, pp. 447-458, 2010.
  24. [24] Y. Yin, B. Huang, W. Wang et al., “Reservoir-Induced Landslides and Risk Control in Three Gorges Project on Yangtze River, China,” J. of Rock Mechanics and Geotechnical Engineering, Vol.8, No.5, pp. 577-595, 2016.
  25. [25] L. Piciullo, S. L. Gariano, M. Melillo et al., “Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides,” Landslides, Vol.14, pp. 995-1008, 2017.
  26. [26] A. M. Lacroix, “L’instabilité des versants dans le domaine rifain,” Revue de Géomorphologie Dynamique, Vol.15, Nos.7-9, pp. 97-109, 1965 (in French).
  27. [27] A. M. Lacroix, “Les glissements de terrains. Présentation d’une carte prévisionnelle des mouvements de masse dans le Rif (Maroc septentrional),” Mines et Géologie, Vol.11, No.27, pp. 45-54, 1968 (in French).
  28. [28] S. L. Gariano and F. Guzzetti, “Landslides in a changing climate,” Earth-Science Reviews, Vol.162, pp. 227-252, 2016.
  29. [29] K. He, G. Ma, X. Hu et al., “Characteristics and mechanisms of coupled road and rainfall-induced landslide in Sichuan China,” Geomatics, Natural Hazards and Risk, Vol.10, No.1, pp. 2313-2329, 2019.
  30. [30] V. Tendero-Salmerón, M. Lafosse, E. d’Acremont et al., “Application of Automated Throw Backstripping Method to Characterize Recent Faulting Activity Migration in the Al Hoceima Bay (Northeast Morocco): Geodynamic Implications,” Frontiers in Earth Science, Vol.9, Article No.645942, 2021.
  31. [31] J. El Khattabi and E. Carlier, “Tectonic and hydrodynamic control of landslides in the northern area of the Central Rif, Morocco,” Eng. Geol., Vol.71, Nos.3-4, pp. 255-264, 2004.
  32. [32] J. El Khattabi, “Démarche méthodologique pluridisciplinaire intégrant une approche transversale pour l’étude des instabilités de versants: Application aux versants du Rif Central (Maroc),” Doctorate Thesis, University of Artois, 2001 (in French).
  33. [33] C. Bertrand, A. Vallet, and J. Mudry, “Hydrochemical Approach of Mechanical Degradation of the Séchilienne Unstable Slope,” Engineering Geology for Society and Territory, Vol.2, pp. 2137-2141, 2015.
  34. [34] F. Cervi, F. Ronchetti, G. Martinelli et al., “Origin and assessment of deep groundwater inflow in the Ca’Lita landslide using hydrochemistry and in situ monitoring,” Hydrology and Earth System Sciences (HESS), Vol.16, No.11, pp. 4205-4221, 2012.
  35. [35] A. Baldermann, M. Dietzel, and V. Reinprecht, “Chemical weathering and progressing alteration as possible controlling factors for creeping landslides,” Science of the Total Environment, Vol.778, Article No.146300, 2021.
  36. [36] S. Binet, H. Jomard, T. Lebourg et al., “Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers,” Hydrological Processes, Vol.21, No.25, pp. 3463-3472, 2007.
  37. [37] B. D. Tung, N. H. Do, N. K. Thanh et al., “Geometry and the Mechanism of Landslide Occurrence in a Limestone Area – Case Examples of Landslides in Vietnam and from Europe, China, and Japan –,” J. Disaster Res., Vol.16, No.4, pp. 646-657, 2021.
  38. [38] E. Gharibi, M. Ghalit, J.-D. Taupin, and A. Lamhamdi, “Effect of saltwater intrusion due to over-exploitation and earthquakes on mineralization processes of spring waters over the Massif Bokkoya (central Rif, Morocco),” J. of Water Supply: Research and Technology-AQUA, Vol.66, No.4, pp. 279-286, 2017.
  39. [39] D. M. Krzeminska, T. A. Bogaard, J.-P. Malet, and L. P. H. van Beek, “A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide,” HESS, Vol.17, No.3, pp. 947-959, 2013.
  40. [40] T. Danjo, T. Ishizawa, and T. Kimura, “Spatial Analysis of the Landslide Characteristics Caused by Heavy Rainfall in the Northern Kyushu District in July, 2017 Using Topography, Geology, and Rainfall Levels,” J. Disaster Res., Vol.13, No.5, pp. 832-845, 2018.
  41. [41] D. R. Bhat, S. Osawa, A. Wakai et al., “Rigorous Analysis of Stress-Dependent Landslide Movements with Groundwater Fluctuations Applicable to Disaster Prevention in Monsoon Asia,” J. Disaster Res., Vol.16, No.4, pp. 658-673, 2021.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024